Персона:
Облов, Константин Юрьевич

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт нанотехнологий в электронике, спинтронике и фотонике
Институт ИНТЭЛ занимается научной деятельностью и подготовкой специалистов в области исследования физических принципов, проектирования и разработки технологий создания компонентной базы электроники гражданского и специального назначения, а также построения современных приборов на её основе. ​Наша основная цель – это создание и развитие научно-образовательного центра мирового уровня в области наноструктурных материалов и устройств электроники, спинтроники, фотоники, а также создание эффективной инновационной среды в области СВЧ-электронной и радиационно-стойкой компонентной базы, источников ТГц излучения, ионно-кластерных технологий материалов.​
Статус
Фамилия
Облов
Имя
Константин Юрьевич
Имя

Результаты поиска

Теперь показываю 1 - 10 из 22
  • Публикация
    Только метаданные
    Thin platinum films topology formation on ceramic membranes
    (2020) Samotaev, N.; Oblov, K.; Etrekova, M.; Ivanova, A.; Veselov, D.; Gorshkova, A.; Самотаев, Николай Николаевич; Облов, Константин Юрьевич; Этрекова, Майя Оразгельдыевна; Иванова, Анастасия Владимировна; Веселов, Денис Сергеевич
    © 2020 Trans Tech Publications Ltd, Switzerland.This article presents the technological aspects of experiments on the stable topological patterns formation from thin films of platinum on ceramic membranes. Platinum thin films were deposited by magnetron sputtering on a clean or pre-activated laser ceramics surface. After the deposition of platinum films, the method of various short-term laser irradiation was attempted to form a topological pattern. The results are discussed.
  • Публикация
    Только метаданные
    Perspective technology for low-scale production of SMD MOX gas sensors
    (2019) Samotaev, N. N.; Oblov, K. Y.; Ivanova, A. V.; Самотаев, Николай Николаевич; Облов, Константин Юрьевич; Иванова, Анастасия Владимировна
    © 2019 Published under licence by IOP Publishing Ltd. The article discusses technological and economic aspects of small-scale production of gas MOX sensors. The main technical factors affecting the use of sensors in various applications are described. The perspective laser micro-milling technology for ceramic MEMS producing of microhotplate and SMD package for the MOX sensor is discussed.
  • Публикация
    Только метаданные
    Ceramic microhotplates for low power metal oxide gas sensors
    (2019) Fritsch, M.; Mosch, S.; Vinnichenko, M.; Trofimenko, N.; Samotaev, N. N.; Oblov, K. Y.; Gorshkova, A.; Самотаев, Николай Николаевич; Облов, Константин Юрьевич
    © 2019 Elsevier Ltd.The progress of the Internet of Things stimulates the development of sensors of small size and low power consumption. Miniaturized metal-oxide semiconductor (MOX) gas sensors (e.g. methane, hydrogen or carbon monoxide detection) can be integrated into agro-industrial facilities such as livestock facilities, fish farming, forestry, food-storage and horticulture, where they support future-oriented plant production (smart agriculture). The central part of a MOX gas sensor is a micro-hotplate, which is mainly responsible for the sensor power consumption at operating temperatures from 450'°C to 600'°C. Under harsh environmental conductions, ceramic materials are the best choice for the micro-hotplate substrate and sensor housing (ceramic MEMS) in combination with platinum metallization for the heater. To realize such gas sensors with low power consumption (<200 mW) were developed of miniaturized printable heaters on ultra-thin ceramic membranes.
  • Публикация
    Только метаданные
    SnO2-Pd as a Gate Material for the Capacitor Type Gas Sensor
    (2019) Samotaev, N.; Oblov, K.; Litvinov, A.; Etrekova, M.; Самотаев, Николай Николаевич; Облов, Константин Юрьевич; Литвинов, Артур Васильевич; Этрекова, Майя Оразгельдыевна
    © 2019 IEEE.The article describes the result of the use SnO2-Pd thin films as a gate for structure measured ppb range of NO2 gas by the capacitive method. The technological aspects of fabrication SnO2-Pd gate and one comparison by metrological parameters with the classical Pd gate field effect sensor are discussed. The use of SnO2-Pd material allows improvement in sensitivity of NO2 by an order of magnitude compare the classical Pd based gate field effect sensors.
  • Публикация
    Только метаданные
    Rapid prototyping of mox gas sensors in form-factor of smd packages
    (2019) Samotaev, N.; Oblov, K.; Ivanova, A.; Gorshkova, A.; Podlepetsky, B.; Самотаев, Николай Николаевич; Облов, Константин Юрьевич; Иванова, Анастасия Владимировна; Подлепецкий, Борис Иванович
    © 2019 IEEE.this work discusses the design of flexible laser micromilling technology for fast prototyping metal oxide based (MOX) gas sensors in SMD packages as a alternative to traditional silicon clean-room technologies. By laser micromilling technology possible to fabricate custom Micro Electro Mechanical System (MEMS) microhotplate platform and also SMD packages for MOX sensor, that gives complete solution for integration one in devices using IoT conception.
  • Публикация
    Только метаданные
    Laser Micromilling Technology as a Key for Rapid Ceramic MEMS Devices
    (2019) Oblov, K. Y.; Samotaev, N. N.; Etrekova, M. O.; Gorshkova, A. V.; Облов, Константин Юрьевич; Самотаев, Николай Николаевич; Этрекова, Майя Оразгельдыевна
    © 2019, Pleiades Publishing, Ltd.The flexible laser micromilling technology for ceramic MEMS production of microhotplates in the surface mount device (SMD) package is described. Current results demonstrate that using described technology makes it possible to manufacture all parts of MEMS sensor in the SMD with form factor of SOT-23 package type.
  • Публикация
    Только метаданные
    Investigation of Selectivity and Reproducibility Characteristics of Gas Capacitive MIS Sensors
    (2021) Mikhailov, A.; Etrekova, M.; Litvinov, A.; Samotaev, N.; Filipchuk, D.; Oblov, K.; Этрекова, Майя Оразгельдыевна; Литвинов, Артур Васильевич; Самотаев, Николай Николаевич; Облов, Константин Юрьевич
    © 2021, Springer Nature Switzerland AG.The influence of the dielectric material (Ta2O5, Si3N4, (ZrO2)10%(TiO2)90% and SnO2), its formation methods (pulsed laser deposition, plasma-chemical method, sol-gel method, reactive magnetron sputtering) and technological post-processing (forming gas annealing) has been investigated. It is shown that different methods of dielectric material obtaining affect the temperature of maximum sensitivity and response time of gas sensors. However, there is no significant improvement in selectivity in the ppb concentration range. A two-electrode capacitive sensor element was manufactured and tested. The using of two-electrode MIS sensor gives some improvement in selectivity but does not justify the cost of increasing the size and power consumption of the sensors. The reproducibility of characteristics of MIS structures of Pd-SiO2-Si and Pd-Ta2O5-SiO2-Si in sensitivity and response time was studied. More than 90% of suitable MIS structures after forming gas annealing (40 h at TMIS = 130 ℃ in a medium of 2% vol.d. H2 + air) have limit of hydrogen detection 150 ± 75 ppb and characteristic response times to supply and removal of 5 ppm H2 τ0.9 = 5 ± 3 min and τ0.1 = 8 ± 5 min, respectively. It is shown that if the sensor has the greatest sensitivity to hydrogen, then for all other gases it will be also the most sensitive among others. The stability to the effects of NO2 concentration overload was investigated. It is shown that the 1000-fold NO2 concentration overload does not poison the sensor.
  • Публикация
    Только метаданные
    Combination of ceramic laser micromachining and printed technology as a way for rapid prototyping semiconductor gas sensors
    (2021) Fritsch, M.; Mosch, S.; Vinnichenko, M.; Trofimenko, N.; Samotaev, N.; Oblov, K.; Dzhumaev, P.; Самотаев, Николай Николаевич; Облов, Константин Юрьевич; Джумаев, Павел Сергеевич
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The work describes a fast and flexible micro/nano fabrication and manufacturing method for ceramic Micro-electromechanical systems (MEMS)sensors. Rapid prototyping techniques are demonstrated for metal oxide sensor fabrication in the form of a complete MEMS device, which could be used as a compact miniaturized surface mount devices package. Ceramic MEMS were fabricated by the laser micromilling of already pre-sintered monolithic materials. It has been demonstrated that it is possible to deposit metallization and sensor films by thick-film and thin-film methods on the manufactured ceramic product. The results of functional tests of such manufactured sensors are presented, demonstrating their full suitability for gas sensing application and indicating that the obtained parameters are at a level comparable to those of industrial produced sensors. Results of design and optimization principles of applied methods for micro-and nanosystems are discussed with regard to future, wider application in semiconductor gas sensors prototyping.
  • Публикация
    Только метаданные
    Silicon MEMS Thermocatalytic Gas Sensor in Miniature Surface Mounted Device Form
    (2021) Samotaev, N.; Samotaev, N; Dzhumaev, P.; Oblov, K.; Pisliakov, A.; Самотаев, Николай Николаевич; Джумаев, Павел Сергеевич; Облов, Константин Юрьевич; Образцов, Иван Сергеевич
    A reduced size thermocatalytic gas sensor was developed for the detection of methane over the 20% of the explosive concentration. The sensor chip is formed from two membranes with a 150 mu m diameter heated area in their centers and covered with highly dispersed nano-sized catalyst and inert reference, respectively. The power dissipation of the chip is well below 70 mW at the 530 degrees C maximum operation temperature. The chip is mounted in a novel surface mounted metal-ceramic sensor package in the form-factor of SOT-89. The sensitivity of the device is 10 mV/v%, whereas the response and recovery times without the additional carbon filter over the chip are <500 ms and <2 s, respectively. The tests have shown the reliability of the new design concerning the hotplate stability and massive encapsulation, but the high degradation rate of the catalyst coupled with its modest chemical power limits the use of the sensor only in pulsed mode of operation. The optimized pulsed mode reduces the average power consumption below 2 mW.
  • Публикация
    Открытый доступ