Персона: Харьков, Максим Михайлович
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Харьков
Имя
Максим Михайлович
Имя
40 results
Результаты поиска
Теперь показываю 1 - 10 из 40
- ПубликацияТолько метаданныеDiagnostics of ion fluxes in low-temperature laboratory and industrial plasmas(2019) Kolodko, D, V.; Ageychenkov, D. G.; Kaziev, A, V.; Leonova, K. A.; Kharkov, M. M.; Tumarkin, A. V.; Колодко, Добрыня Вячеславич; Агейченков, Дмитрий Григорьевич; Казиев, Андрей Викторович; Харьков, Максим Михайлович; Тумаркин, Александр ВладимировичWe studied the ion fluxes on metal surfaces in the inductively coupled plasma reactor as a test facility. The gas mixture of argon and nitrogen was used, with 0.44 Pa total pressure. The radiofrequency power was varied in a wide range (250-2000 W). The ion fluxes were sampled in situ using a specially designed electrostatic extractor and then analyzed with a custom-built magnetic sector mass-separator. The gas composition was independently monitored by the quadrupole analyzer. All measurements were accompanied by optical emission spectroscopy (OES). The correlations of measured optical and corpuscular data are discussed. The conversion function linking optical and corpuscular intensities for Ar/N-2 radiofrequency discharge was determined.
- ПубликацияТолько метаданныеDeuterium and helium retention in W with and without He-induced W ‘fuzz’ exposed to pulsed high-temperature deuterium plasma(2019) Tokitani, M.; Ogorodnikova, O. V.; Klimov, K. S.; Poskakalov, A. G.; Kaziev, A. V.; Kharkov, M. M.; Efimov, V. S.; Gasparyan, Y. M.; Volkov, N. V.; Alimov, V. K.; Огородникова, Ольга Вячеславовна; Климов, Николай Сергеевич; Казиев, Андрей Викторович; Харьков, Максим Михайлович; Ефимов, Виталий Сергеевич; Гаспарян, Юрий Микаэлович© 2018 Elsevier B.V. In the present work, helium (He) was incorporated into tungsten (W) samples by inductively coupled plasma (ICP) source above the threshold of He-induced W ‘fuzz’ formation on W surface. Then, W samples with and without nano-structured W ‘fuzz’ were exposed to pulsed heat loads using deuterium (D) plasma in quasi-stationary high-current plasma gun QSPA-T. The pulse duration was 1 ms and number of pulses was varied from one to thirty to simulate ITER transient events with surface heat load parameters relevant to edge-localized-mode (ELM) impacts. The irradiation was performed below and above the W melting threshold. The D and He retention in each irradiated sample was measured by a method of thermal desorption spectroscopy. We examined the impact of (i) ELMs-like events and (ii) formation of He-induced nano-structured ‘fuzz’ on the D retention in W. We found that the D retention was the highest for samples irradiated by plasma gun above the melting threshold after thirty pulses. Moreover, the D retention after 10 pulses of deuterium plasma gun exposure was higher than that after stationary low-energy plasma exposure at sample temperature of either 600 or 700 K indicating the dominate influence of ELM's-like events on the D retention compared to normal operation regime. The D retention in W samples with the presence of He-induced W ‘fuzz’ was slightly smaller than without that after one pulse of plasma gun exposure with heat load below the W melting temperature. The W ‘fuzz’ was not disappear in this loading conditions, only the length and thickness of nano-structured W fibres were reduced by factors of ∼4 and ∼2, respectively. The He concentration in W with W ‘fuzz’ was decreased by a factor of about 3 after one pulse of plasma gun exposure. The results obtained give possibility to assess the particle retention in divertor areas subjected to high thermal loads at different operation regimes.
- ПубликацияОткрытый доступSURFACE MODIFICATIONS OF W-BASED MATERIALS UNDER HELIUM AND DEUTERIUM ION IMPLANTATION(НИЯУ МИФИ, 2021) Ogorodnikova, O. V.; Klimov, N. S.; Gasparyan, Yu. M.; Harutyunyan, Z. R.; Efimov, V. S.; Kovalenko, D.; Gutarov, K.; Poskakalov, А. G.; Kharkov, M. M.; Kaziev, A. V.; Харьков, Максим Михайлович; Гаспарян, Юрий Микаэлович; Казиев, Андрей Викторович; Ефимов, Виталий Сергеевич; Огородникова, Ольга ВячеславовнаIn a thermonuclear reactor, materials will be irradiated with hydrogen isotopes and helium (He), neutrons, and heat fluxes. Tungsten (W) and dense nano-structured tungsten (CMSII) coatings are used as plasma-facing materials in current tokamaks and suggested to be used for future fusion devices. In this regard, the study of the accumulation of He and deuterium (D) in W based materials and corresponding surface modifications under normal operation conditions and transient events appears necessary for assessment of safety of fusion reactor due to the radioactivity of tritium and material performance and for the plasma fuel balance. Therefore, in this work, irradiation of W-based materials with D and He ions in stationary regime and in quasi-stationary high-current plasma gun QSPA-T below and above the melting threshold has been performed. In QSPA-T, a pulse duration was 1 ms and number of pulses was varied from one to thirty. In stationary plasma loads, ion energy was varied from 20 to 3 keV, temperature 300-1200 K and flux/fluence 1017-1021 at/m2s/1020-1025 at/m2.
- ПубликацияТолько метаданныеDirect ion content measurements in a non-sputtering magnetron discharge(2019) Kaziev, A. V.; Kolodko, D. V.; Ageychenkov, D. G.; Tumarkin, A. V.; Kharkov, M. M.; Stepanova, T. V.; Казиев, Андрей Викторович; Колодко, Добрыня Вячеславич; Агейченков, Дмитрий Григорьевич; Тумаркин, Александр Владимирович; Харьков, Максим Михайлович; Степанова, Татьяна ВладимировнаIn present contribution we report the first direct measurements of ion fluxes in a nonsputtering magnetron discharge (NSMD) with Al cathode in Ar/O-2 mixtures. The diagnostic unit comprising three-electrode electrostatic lens ion extractor, magnetic sector mass-analyzer, and a vacuum electron multiplier was calibrated and then used to record the time-resolved ion counts of Al+ and Ar+ both in NSMD and arc regimes. The results clearly indicate that in NSMD the dominant species are Ar ions while Al ion signal is lower than the sensitivity limit due to noise level, in contrast to the arc discharge. The capabilities of the diagnostics setup and its sensitivity limits are discussed.
- ПубликацияТолько метаданныеLangmuir probe diagnostics of an impulse magnetron discharge with hot Cr target(2019) Tumarkin, A. V.; Kaziev, A, V.; Leonova, K. A.; Kharkov, M. M.; Kolodko, D. V.; Khomyakov, A. Yu.; Тумаркин, Александр Владимирович; Казиев, Андрей Викторович; Харьков, Максим Михайлович; Колодко, Добрыня ВячеславичImpulse magnetron discharge (pulse duration 20 ms) with uncooled Cr target has been investigated with a specially designed Langmuir probe setup in a wide range of parameters (magnetic field and discharge power). The spatial distributions of electron temperature and plasma density have been measured in the gasless self-sputtering mode. It has been shown that in the gasless high-power pulsed discharge with hot Cr target, plasma density is as high as 5 x 10(18) M-3 at a pulsed power density of 1430 W/cm(2), while the electron temperature drops to values below 1 eV.
- ПубликацияТолько метаданныеAnalysis of the Near-Surface Layers of Lithium Coatings Using Laser Induced Breakdown Spectroscopy(2019) Vovchenko, E. D.; Krat, S. A.; Kostyushin, V. A.; Khar'kov, M. M.; Bulgadaryan, D. G.; Prishvitsyn, A. S.; Stepanova, T. V.; Kurnaev, V. A.; Zakharov, L. E.; Вовченко, Евгений Дмитриевич; Крат, Степан Андреевич; Харьков, Максим Михайлович; Пришвицын, Александр Сергеевич; Степанова, Татьяна Владимировна© 2019, Pleiades Publishing, Ltd.The paper reports results of studying the geometry of craters formed by the action of laser pulses on solid-state targets of aluminum and lithium films at a power density on the target of (1–5) × 1010 W/cm2 and variation of the number of pulses in the range of 1–150, as well as the results of ex situ layer-by-layer analysis of lithium films on quartz coatings carried out using the method laser induced breakdown spectroscopy to determine the thickness of the films.
- ПубликацияТолько метаданныеComparison of thermal properties of a hot target magnetron operated in DC and long HIPIMS modes(2021) Kaziev, A. V.; Kolodko, D. V.; Tumarkin, A, V.; Kharkov, M. M.; Lisenkov, V. Y.; Sergeev, N. S.; Казиев, Андрей Викторович; Колодко, Добрыня Вячеславич; Тумаркин, Александр Владимирович; Харьков, Максим Михайлович; Сергеев, Никита Сергеевич© 2021 Elsevier B.V.Thermal properties of the magnetron discharge with uncooled copper and chromium targets were studied experimentally and theoretically for DC and long HiPIMS (L-HiPIMS) operation modes. A set of thermal fluxes was considered to build a numerical model of the hot target exposed to DC and high-power pulsed plasma. The modeling results were tested in the experiments. The temperature of targets was measured directly in course of magnetron discharge operation with an elaborated contact thermocouple method. The measurements were made in two modes. At first the temporal evolution of temperature was recorded for a fixed applied discharge power. The results were found to well agree with temperature values expected from calculations. At 2 kW power, it takes ~50 s to reach the melting point of copper. The steady-state temperature values were also measured for a number of discharge power levels. The obtained dependence clearly demonstrated that the main mechanisms of the target heat balance at high temperatures are surface radiation and heat transfer due to thermal conductivity of the heat insulation supports between the target and water-cooled cathode. The parameters of DC hot target magnetron were compared to the high-power pulsed regime with the pulse-on time 20 ms. A promising method of a hot target magnetron discharge operation was considered that involves applying long (>20 ms) high-power pulses to the target pre-heated in the DC mode during the pulse-off period.
- ПубликацияТолько метаданныеEffect of the presence of helium in tungsten on deuterium retention(2021) Kanashenko, S.; Ogorodnikova, O. V.; Harutyunyan, Z. R.; Gasparyan, Y. M.; Efimov, V. S.; Kharkov, M. M.; Kaziev, A. V.; Огородникова, Ольга Вячеславовна; Арутюнян, Зорий Робертович; Гаспарян, Юрий Микаэлович; Ефимов, Виталий Сергеевич; Харьков, Максим Михайлович; Казиев, Андрей Викторович© 2021Tungsten (W) samples were pre-irradiated with low-energy helium (He) ions with an energy of 80 eV, flux of 1021 He/m2s, at a sample temperature of 1200–1250 K in a inductively coupled plasma (ICP) source facility. Such irradiation conditions led to a formation of a nano-structured surface layer of tungsten, called ‘fuzz’. These samples were then irradiated with D3+ ions with an energy of 2 keV and small doses of 1019 D/m2 at room temperature and in-situ thermal desorption analysis (TDS) was performed. It was found that the main factor determining the deuterium (D) retention in W samples pre-irradiated with helium is the concentration of helium below the surface, namely, the D retention was increased with decreasing the He concentration until the nanostructured W ‘fuzz’ was removed. The effect of nano-structured tungsten ‘fuzz’ is only in a decrease of the reflection coefficient of deuterium ions compared to a smoother surface, resulting in the increase of the D influx into W and, consequently, increase of the D retention. However, this increase has a minor effect on the D retention compared to the He concentration in the subsurface layer of W.
- ПубликацияТолько метаданныеInstabilities of electrical properties of He-induced W "fuzz" within the pre-breakdown and breakdown regimes(2021) Zemskov, Yu. A.; Mamontov, Yu. I.; Uimanov, I. V.; Zubarev, N. M.; Kaziev, A. V.; Kharkov, M. M.; Казиев, Андрей Викторович; Харьков, Максим Михайлович© 2021 Institute of Physics Publishing. All rights reserved.The investigation of the He-induced W "fuzz" electrical properties was carried out. For the research, an automated experimental setup was designed. The setup was based on a vacuum chamber operated under high vacuum conditions (~ 10–7 Pa). The vacuum diode under investigation comprised of a flat W “fuzz” cathode with an area of about 1 cm2 and a 2 mm radius cylindrical copper anode with a hemisphere tip. The cathode-anode distance was about 100 µm. The voltage applied was up to 10 kV. A DAC/ADC module controlled an HV power supply and automatically registered currents and voltages in the circuit. The effect of a spontaneous change in the emissive ability of the investigated surface area was observed. These changes can vary significantly in magnitude. Large-scale changes can lead to a permanent increase in the emissive ability of a specific area or to a breakdown of the gap. Small changes, as a rule, are reversible, have a stepped nature, and make it difficult to record and interpret the current-voltage characteristics of the field emitter.
- ПубликацияТолько метаданныеIon current optimization in a magnetron with tunable magnetic field configuration(2021) Kaziev, A. V.; Ageychenkov, D. G.; Tumarkin, A. V.; Kolodko, D. V.; Sergeev, N. S.; Kharkov, M. M.; Leonova, K. A.; Казиев, Андрей Викторович; Агейченков, Дмитрий Григорьевич; Тумаркин, Александр Владимирович; Колодко, Добрыня Вячеславич; Сергеев, Никита Сергеевич; Харьков, Максим Михайлович© 2021 Institute of Physics Publishing. All rights reserved.The response of the ion current in the substrate region to the magnetic system configuration of a circular magnetron was studied during direct current sputtering of aluminum target. The unbalancing degree induced by changing of magnets’ positions was modelled with finite element methods. The ion saturation current in the substrate region showed more than twofold variation with unbalancing degree in the range 0.6–1.2. The dependence was non-monotonic, and the system was optimized to maximize the substrate ion current. The Langmuir probe diagnostics showed plasma density ~ 1016 m–3 in the optimized magnetic configuration.