Publication:
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques

Дата
2020
Авторы
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Ambrogi, F.
Bychkova, O.
Chadeeva, M.
Parygin, P.
Popova, E.
Rusinov, V.
Matveev, V.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
© 2020 CERN for the benefit of the CMS collaboration..Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at s = 13TeV, corresponding to an integrated luminosity of 35.9 fb-1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.
Описание
Ключевые слова
Цитирование
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques / Sirunyan, A.M. [et al.] // Journal of Instrumentation. - 2020. - 15. - № 6. - 10.1088/1748-0221/15/06/P06005
Коллекции