Publication:
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques

dc.contributor.authorSirunyan, A. M.
dc.contributor.authorTumasyan, A.
dc.contributor.authorAdam, W.
dc.contributor.authorAmbrogi, F.
dc.contributor.authorBychkova, O.
dc.contributor.authorChadeeva, M.
dc.contributor.authorParygin, P.
dc.contributor.authorPopova, E.
dc.contributor.authorRusinov, V.
dc.contributor.authorMatveev, V.
dc.contributor.authorЧадеева, Марина Валентиновна
dc.contributor.authorРусинов, Владимир Юрьевич
dc.contributor.authorМатвеев, Виктор Анатольевич
dc.date.accessioned2024-11-26T15:18:29Z
dc.date.available2024-11-26T15:18:29Z
dc.date.issued2020
dc.description.abstract© 2020 CERN for the benefit of the CMS collaboration..Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at s = 13TeV, corresponding to an integrated luminosity of 35.9 fb-1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.
dc.identifier.citationIdentification of heavy, energetic, hadronically decaying particles using machine-learning techniques / Sirunyan, A.M. [et al.] // Journal of Instrumentation. - 2020. - 15. - № 6. - 10.1088/1748-0221/15/06/P06005
dc.identifier.doi10.1088/1748-0221/15/06/P06005
dc.identifier.urihttps://www.doi.org/10.1088/1748-0221/15/06/P06005
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85088524436&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000545350900005
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/22087
dc.relation.ispartofJournal of Instrumentation
dc.titleIdentification of heavy, energetic, hadronically decaying particles using machine-learning techniques
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue6
oaire.citation.volume15
relation.isAuthorOfPublication94d18afd-5d6f-42de-9f45-66aa6ff3e48e
relation.isAuthorOfPublicationbabf60c3-6395-49e8-b2fc-f480f11b6954
relation.isAuthorOfPublicationef548252-18ef-404e-af89-6a34bcb1e902
relation.isAuthorOfPublication.latestForDiscovery94d18afd-5d6f-42de-9f45-66aa6ff3e48e
relation.isOrgUnitOfPublicationba0b4738-e6bd-4285-bda5-16ab2240dbd1
relation.isOrgUnitOfPublication.latestForDiscoveryba0b4738-e6bd-4285-bda5-16ab2240dbd1
relation.isProjectOfPublication3b98e09a-644d-4cc9-b64d-e187cac4328e
relation.isProjectOfPublication.latestForDiscovery3b98e09a-644d-4cc9-b64d-e187cac4328e
Файлы
Original bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
Sirunyan_2020_J._Inst._15_P06005.pdf
Size:
5.27 MB
Format:
Adobe Portable Document Format
Description:
Коллекции