Publication: Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
dc.contributor.author | Sirunyan, A. M. | |
dc.contributor.author | Tumasyan, A. | |
dc.contributor.author | Adam, W. | |
dc.contributor.author | Ambrogi, F. | |
dc.contributor.author | Bychkova, O. | |
dc.contributor.author | Chadeeva, M. | |
dc.contributor.author | Parygin, P. | |
dc.contributor.author | Popova, E. | |
dc.contributor.author | Rusinov, V. | |
dc.contributor.author | Matveev, V. | |
dc.contributor.author | Чадеева, Марина Валентиновна | |
dc.contributor.author | Русинов, Владимир Юрьевич | |
dc.contributor.author | Матвеев, Виктор Анатольевич | |
dc.date.accessioned | 2024-11-26T15:18:29Z | |
dc.date.available | 2024-11-26T15:18:29Z | |
dc.date.issued | 2020 | |
dc.description.abstract | © 2020 CERN for the benefit of the CMS collaboration..Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at s = 13TeV, corresponding to an integrated luminosity of 35.9 fb-1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency. | |
dc.identifier.citation | Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques / Sirunyan, A.M. [et al.] // Journal of Instrumentation. - 2020. - 15. - № 6. - 10.1088/1748-0221/15/06/P06005 | |
dc.identifier.doi | 10.1088/1748-0221/15/06/P06005 | |
dc.identifier.uri | https://www.doi.org/10.1088/1748-0221/15/06/P06005 | |
dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85088524436&origin=resultslist | |
dc.identifier.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000545350900005 | |
dc.identifier.uri | https://openrepository.mephi.ru/handle/123456789/22087 | |
dc.relation.ispartof | Journal of Instrumentation | |
dc.title | Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques | |
dc.type | Article | |
dspace.entity.type | Publication | |
oaire.citation.issue | 6 | |
oaire.citation.volume | 15 | |
relation.isAuthorOfPublication | 94d18afd-5d6f-42de-9f45-66aa6ff3e48e | |
relation.isAuthorOfPublication | babf60c3-6395-49e8-b2fc-f480f11b6954 | |
relation.isAuthorOfPublication | ef548252-18ef-404e-af89-6a34bcb1e902 | |
relation.isAuthorOfPublication.latestForDiscovery | 94d18afd-5d6f-42de-9f45-66aa6ff3e48e | |
relation.isOrgUnitOfPublication | ba0b4738-e6bd-4285-bda5-16ab2240dbd1 | |
relation.isOrgUnitOfPublication.latestForDiscovery | ba0b4738-e6bd-4285-bda5-16ab2240dbd1 | |
relation.isProjectOfPublication | 3b98e09a-644d-4cc9-b64d-e187cac4328e | |
relation.isProjectOfPublication.latestForDiscovery | 3b98e09a-644d-4cc9-b64d-e187cac4328e |
Файлы
Original bundle
1 - 1 из 1
Загружается...
- Name:
- Sirunyan_2020_J._Inst._15_P06005.pdf
- Size:
- 5.27 MB
- Format:
- Adobe Portable Document Format
- Description: