Персона:
Козлов, Владимир Сергеевич

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Козлов
Имя
Владимир Сергеевич
Имя

Результаты поиска

Теперь показываю 1 - 10 из 10
  • Публикация
    Только метаданные
    A Model for Recognition of Dermatoscopic Points in Images of Skin Neoplasms
    (2021) Tamrazova, O. B.; Sergeev, V. Y.; Kruglova, L. S.; Nikitaev, V. G.; Pronichev, A. N.; Solomatin, M. A.; Kozlov, V. S.; Druzhinina, E. A.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Соломатин, Михаил Андреевич; Козлов, Владимир Сергеевич
    © 2021, Springer Science+Business Media, LLC, part of Springer Nature.The challenges of using computer diagnostics to seek structural elements of melanocytic neoplasms, including cutaneous melanomas at early stages of their development, are discussed. The characteristic features of the structural elements — dermatoscopic points — are also considered. A computer vision technique for recognizing these characteristic features is presented. The developed interdisciplinary approach can be used in the diagnosis of oncological diseases of the skin as a means of supporting decision making for the primary prevention of malignant neoplasms.
  • Публикация
    Только метаданные
    A Model for Detecting Structural Elements – Lines – in Digital Images in Oncodermatology
    (2021) Tamrazova, O. B.; Sergeev, V. Y.; Nikitaev, V. G.; Pronichev, A. N.; Otchenashenko, A. I.; Druzhinina, E. A.; Kozyreva, A. V.; Solomatin, M. A.; Kozlov, V. S.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Отченашенко, Александр Иванович; Соломатин, Михаил Андреевич; Козлов, Владимир Сергеевич
    © 2021, Springer Science+Business Media, LLC, part of Springer Nature.The problem of early diagnosis of one of the most dangerous malignant neoplasms of the skin, melanoma, is considered. A model for detecting structural elements (lines) in digital images of skin neoplasms in oncodermatology has been developed. The model is based on adaptive binarization of the initial digital dermatoscopy image of skin les neoplasms ions and subsequent operations of dilation, erosion, skeletonization, and filtration of false line fragments. Test dermatoscopy images of skin neoplasms were visually divided into four groups to conduct the experiment. Optimal parameters of image processing of four groups for the model of detecting structural elements – lines – have been experimentally established. The experimentally determined accuracy of line detection was 95%. This research is the result of interdisciplinary cooperation of dermatologists of the Central Medical Academy of the Administrative Department of the President of the Russian Federation, the Medical Institute of the Russian Peoples’ Friendship University and experts in the field of information and measurement systems of the Engineering and Physical Institute of Biomedicine of the National Research Nuclear University “MEPhI”. The proposed model can be used in the development of computer systems to support medical decision-making in the diagnosis of skin melanoma – a dangerous malignant neoplasm.
  • Публикация
    Только метаданные
    Detection of Circles as Structural Elements in Dermatoscopic Images of Skin Neoplasms in the Diagnosis of Melanoma
    (2021) Tamrazova, O. B.; Sergeev, V. Y.; Nikitaev, V. G.; Pronichev, A. N.; Medvedeva, O. A.; Kozlov, V. S.; Solomatin, M. A.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Козлов, Владимир Сергеевич; Соломатин, Михаил Андреевич
    © 2021, Springer Science+Business Media, LLC, part of Springer Nature.A method for recognizing “circles”, significant structural elements of skin neoplasms, has been proposed. An RDS-2 dermatoscope has been used for imaging. Special software has been developed to implement the proposed method for circle recognition. The results of experimental detection of circles are presented. The developed method can be used in diagnostic systems for detecting skin melanoma, a dangerous form of cancer.
  • Публикация
    Открытый доступ
    ПРОГРАММА ДЛЯ ДИАГНОСТИКИ МЕЛАНОМЫ НА ОСНОВЕ ВЫДЕЛЕНИЯ БЕССТРУКТУРНЫХ ОБЛАСТЕЙ
    (НИЯУ МИФИ, 2023) Никитаев, В. Г.; Проничев, А. Н.; Лим, А. О.; Абдрахманов, Р. В.; Козлов, В. С.; Тамразова, О. Б.; Сергеев, В. Ю.; Козлов, Владимир Сергеевич; Проничев, Александр Николаевич; Никитаев, Валентин Григорьевич
    Программа предназначена для распознавания бесструктурных областей на изображениях новообразований кожи. Применяется для распознавания бесструктурных областей на цифровых дерматоскопических изображениях и расчета значимых для диагностики меланомы характеристик этих областей. Программа позволяет подключать дополнительные модули распознавания и описания структурных элементов пигментных новообразований кожи. Тип ЭВМ: IBM PC-совмест. ПК; ОС: Windows 10.
  • Публикация
    Только метаданные
    Model for Estimating the Morphological Characteristics of Structureless Areas of Pigmented Skin Neoplasms
    (2022) Nikitaev, V. G.; Pronichev, A. N.; Lim, A. O.; Kozlov, V. S.; Tamrazova, O. B.; Sergeev, Yu. Yu.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Козлов, Владимир Сергеевич
  • Публикация
    Только метаданные
    Model for Detecting Globules in Images of Skin Neoplasms
    (2022) Tamrazova, O. B.; Sergeev, V. Y.; Nikitaev, V. G.; Pronichev, A. N.; Lim, A. O.; Kozlov, V. S.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Козлов, Владимир Сергеевич
    © 2022, Pleiades Publishing, Ltd.Abstract: This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts without the need to manually adjust the parameters. The results of the experiment confirming the adequacy of the model are presented. The globule recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2868 globules.
  • Публикация
    Только метаданные
    A Model for Recognizing Structureless Hyperpigmented Areas in Dermato-Oncology
    (2022) Tamrazova, O. B.; Sergeev, V. Y.; Nikitaev, V. G.; Pronichev, A. N.; Solomatin, M. A.; Medvedeva, O. A.; Kozlov, V. S.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Соломатин, Михаил Андреевич; Козлов, Владимир Сергеевич
    © 2022, Springer Science+Business Media, LLC, part of Springer Nature.A model for recognizing structureless hyperpigmented areas in images of skin neoplasms has been developed. Recognition of hyperpigmented areas is important for the diagnosis of skin melanoma, a rapidly progressing skin cancer. A digital dermatoscope RDS-2 has been used to obtain images serving as the initial data for the model. Software for recognizing hyperpigmentation areas in images of skin neoplasms has been developed on the basis of the proposed model. Tests have shown the recognition accuracy to be 82%. The proposed model can be recommended for use in decision-making support systems for the diagnosis of melanoma.
  • Публикация
    Открытый доступ
    СПОСОБ ДИАГНОСТИКИ МЕЛАНОМЫ КОЖИ
    (НИЯУ МИФИ, 2022) Никитаев, В. Г.; Нагорнов, О. В.; Проничев, А. Н.; Тамразова, О. Б.; Сергеев, В. Ю.; Сергеев, Ю. Ю.; Сельчук, В. Ю.; Дмитриева, В. В.; Отченашенко, А. И.; Зайцев, С. М.; Дружинина, Е. А.; Козырева, А. В.; Соломатин, М. А.; Козлов, В. С.; Будадин, О. Н.; Соломатин, Михаил Андреевич; Дмитриева, Валентина Викторовна; Сельчук, Владимир Юрьевич; Козлов, Владимир Сергеевич; Отченашенко, Александр Иванович; Нагорнов, Олег Викторович; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич
    Изобретение относится к медицине, а именно к онкологии, и может быть использовано для диагностики меланомы кожи. Способ включает регистрацию дерматоскопического видеоизображения кожи; измерение и выделение пораженного участка на видеоизображении; измерение координат и сегментировании изображения характерного участка; выбор диагностического признака изображения для формирования диагноза; измерение параметров признака и сравнение параметров выбранного признака с библиотекой заранее определенных параметров признака, формирование диагноза на основе сравнения параметров признака, выбранного из группы признаков: цвет, граница, асимметрия и текстура изображения с параметрами диагностического признака изображения. После регистрации дерматоскопического видеоизображения участка кожи и перед выбором диагностического признака изображения для формирования диагноза осуществляют следующие действия: задают критерий качества видеоизображения кожи для обеспечения достоверного анализа видеоизображения и диагностики меланомы, проводят повторную по меньшей мере одну регистрацию дерматоскопического видеоизображения того же участка кожи, измеряют значения пикселей зарегистрированного видеоизображения, накладывают зарегистрированные цифровые видеоизображения участков кожи друг на друга, измеряют значения пикселей наложенного видеоизображения, измеряют среднее значение величины пикселей наложенных видеоизображений, измеряют среднеквадратичное отклонение величин пикселей наложенных видеоизображений, характеризующее величину шума, определяют отношение сигнал/шум (С/Ш) для наложенных видеоизображений, определяют необходимость продолжения регистрации видеоизображений кожи, сравнивая полученное отношение (С/Ш) с заданным критерием качества видеоизображения. Далее выбирают характерные участки всего зарегистрированного изображения кожи по признаку наличия интенсивности аномалий, определяют пороговое значение бинаризации по всей площади изображения, определяют адаптивное пороговое значение бинаризации по характерным участкам изображения, осуществляют бинаризацию и измеряют полученные результаты по всей площади зарегистрированного изображения путем сравнения значений пикселей с пороговым значением. Осуществляют бинаризацию и измеряют полученные результаты по характерным участкам площади изображения. И измеряют результаты комбинированной бинаризации, полученной путем наложения операцией «логическое И» измеренных результатов бинаризации изображения на результат бинаризации адаптивного порога для снижения уровня шумов фона и однородностей внутри площади изображения меланомы. Осуществляют дилатацию изображения комбинированной бинаризации. Осуществляют эрозию измеренного комбинированного бинаризованного изображения для сглаживание краев линий, скелетизацию измеренного комбинированного бинаризованного изображения со сглаженными краями линий, формирующих скелет линий, фильтрацию скелетизации измеренного комбинированного бинаризованного изображения и измерение полученных результатов для устранения ложных отростков скелетных линий. Изобретение обеспечивает повышение объективности, информативности и достоверности при постановке диагноза меланомы кожного покрова. 4 з.п. ф-лы., 5 ил., 1 табл.
  • Публикация
    Только метаданные
    Color recognition of dermatoscopic images of skin neoplasms
    (2021) Tamrazova, O. B.; Sergeev, V. Yu.; Sergeev, Yu. Yu.; Nikitaev, V. G.; Pronichev, A. N.; Medvedeva, O. A.; Solomatin, M. A.; Kozlov, V. S.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Соломатин, Михаил Андреевич; Козлов, Владимир Сергеевич
    © 2021 Institute of Physics Publishing. All rights reserved.The problem of determining the colors of dermatoscopic images of skin neoplasms using computer technologies is considered. Based on the proposed model, a program for recognizing the colors of the studied areas of neoplasm has been developed. The adequacy of this model was tested experimentally. This work is designed to increase the reliability of the diagnosis of skin neoplasms.
  • Публикация
    Только метаданные
    Model for Estimating the Heterogeneity of the Distribution of Globule Characteristics in Images of Skin Neoplasms
    (2021) Tamrazova, O. B.; Sergeev, V. Y.; Nikitaev, V. G.; Pronichev, A. N.; Selchuk, V. Y.; Kozlov, V. S.; Lim, A. O.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Сельчук, Владимир Юрьевич; Козлов, Владимир Сергеевич
    © 2022, Springer Science+Business Media, LLC, part of Springer Nature.The problem of diagnosing skin melanoma by digital imaging of the tumor is considered. Clinical algorithms for detecting skin melanoma are briefly described. A review of works devoted to the automated assessment of distribution asymmetry of the shape, color, and area of globules – important signs of melanoma, is given. A model for assessing the distribution heterogeneity of globule characteristics on digital images in the diagnosis of skin neoplasms has been developed, and models of distribution heterogeneity indicators have been proposed. An experimental comparative assessment of indicator models was carried out using a software system developed in the C++ language. The most informative indicators of globule characteristics distribution heterogeneity have been determined. The maximum (93%) accuracy in assessing the distribution heterogeneity of globule characteristics was obtained for the indicator “reduced reciprocal of the highest frequency of occurrence of the measured areas of globules.” The results of the study can be useful in the development of medical decision support systems for the diagnosis of melanoma.