Персона:
Никитаев, Валентин Григорьевич

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Руководитель научной группы "Прикладные технологии искусственного интеллекта в онкодиагностике и промышленном контроле"
Фамилия
Никитаев
Имя
Валентин Григорьевич
Имя

Результаты поиска

Теперь показываю 1 - 10 из 63
  • Публикация
    Открытый доступ
    СПОСОБ ДИАГНОСТИКИ ОНКОЛОГИЧЕСКОГО ЗАБОЛЕВАНИЯ КРОВИ
    (НИЯУ МИФИ, 2023) Никитаев, В. Г.; Проничев, А. Н.; Нагорнов, О. В.; Тупицын, Н. Н.; Сельчук, В. Ю.; Дмитриева, В. В.; Палладина, А. Д.; Поляков, Е. В.; Поляков, Евгений Валерьевич; Проничев, Александр Николаевич; Никитаев, Валентин Григорьевич; Нагорнов, Олег Викторович; Дмитриева, Валентина Викторовна
    Изобретение относится к области медицины и может быть использовано для диагностики минимальной остаточной болезни (МОБ) или минимальной резидуальной болезни (МРБ, Minimal residual diseases) - популяции опухолевых клеток, оставшейся в организме после достижения клинико-гематологической ремиссии (количество бластных клеток в миелограмме менее 5%) и острого лейкоза. Предлагается способ диагностики онкологического заболевания крови, заключающийся в проведении микроскопического анализа мазков периферической крови для определения формулы крови; проведении микроскопического анализа мазков костного мозга для получения изображений клеток костного мозга, распознавание клеток костного мозга путем сравнения их с образцовыми изображениями клеток и построение миелограммы; выполнении анализа костного мозга с применением цитохимических маркерных реакций на гранулоцитарный и моноцитарный ряды гемопоэза и иммунофенотипического исследования с помощью проточной лазерной цитофлюорометрии, в котором используется набор диагностических антител для определения направленности дифференцировки клеток и установления стадии созревания бластов и сопоставления полученных результатов микроскопического анализа костного мозга, формулы крови и миелограммы с результатами ранее выполняемых исследований, хранящихся в базе данных, для диагностики заболевания. Изобретение обеспечивает повышение точности выявления и диагностики онкологического заболевания крови. 3 ил.
  • Публикация
    Только метаданные
    Digital Microscopy Technologies: A Method for Constructing Incision Lines on Cell Conglomerate Images
    (2020) Tupitsyn, N. N.; Palladina, A. D.; Nikitaev, V. G.; Pronichev, A. N.; Dmitrieva, V. V.; Polyakov, E. V.; Samsonova, A. D.; Grigoryeva, M. S.; Druzhinina, E. A.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Дмитриева, Валентина Викторовна; Поляков, Евгений Валерьевич; Григорьева, Мария Сергеевна
    © 2020, Allerton Press, Inc.Abstract: The article is devoted to the technology of separating conglomerates of leukocyte cells in digital microscopy images of bone marrow preparations in the light range for determining the number of cells and automatic diagnosing. A special feature of the proposed method is the use of the principle of separating cell conglomerates based on abnormal points. The key points of the method: the determination of the cell conglomerate contour, the detection of abnormal points, and sectioning the cell conglomerate image by the bisector of the angle whose vertex is the abnormal point. The parameters providing necessary accuracy of cell conglomerate separation are determined. Here the accuracy is understood as a fraction of correctly separated cells in the images of bone marrow preparations with respect to the total number of cells in the images used in the experiment. Images containing cell conglomerates forming chains were considered. The experiment confirmed the efficiency of the proposed method. The separation accuracy of adjacent cells is 95%.
  • Публикация
    Только метаданные
    Nevi in children: Organoid epidermal nevi: Clinical picture, diagnosis, treatment (Part 2)
    (2020) Tamrazova, O. B.; Sergeev, V. Y.; Sergeev, Y. Y.; Nikitaev, V. G.; Pronichev, A. N.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич
    © 2020, Pediatria Ltd.. All rights reserved.Nevi are congenital formations that appear on the skin from birth or in early childhood, are very common in healthy children and, as a rule, are harmless. The article deals with epidermal nevi formed from epidermal cells and skin appendages (sebaceous and sweat glands, hair follicles). Particular attention is paid to the syndromes of epidermal nevi, which are characterized by a combination of skin rashes with systemic manifestations. Correct diagnosis of different subtypes of nevi, their differential diagnosis with other pigment formations (including melanomas) and non- melanoma skin cancer, as well as the recognition of non-uniform syndromes will help to determine the pediatrician correct tactics of management of patients, further counseling and assess the prognosis of the disease. Early diagnosis using dermatoscopy and modern techniques based on artificial intelligence is most significant in children before the development of progressive symptoms or neurological disorders. In the detection of epidermal nevus syndromes, consultations of related specialists (neurologists, traumatologists, cardiologists, etc.) are recommended.
  • Публикация
    Только метаданные
    Development and Study of a Method for Cell Separation During White Blood Cell Segmentation on Images of Bone Marrow Preparations in Information and Measurement Systems for Diagnostics of Acute Leukemia
    (2020) Tupitsyn, N. N.; Nikitaev, V. G.; Pronichev, A. N.; Dmitrieva, V. V.; Polyakov, E. V.; Samsonova, A. D.; Selchuk, V. Y.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Дмитриева, Валентина Викторовна; Поляков, Евгений Валерьевич; Сельчук, Владимир Юрьевич
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature.The issues of using information and measurement systems based on processing of digital images of microscopic preparations for solving large-scale tasks of automating the diagnosis of acute leukemia are considered. The high density of leukocyte cells in the preparation (hypercellularity) is a feature of microscopic images of bone marrow preparations. It causes the proximity of cells to each other and their contact with the formation of conglomerates. Measuring of the characteristics of bone marrow cells in such conditions leads to unacceptable errors (over 50%). The work is devoted to segmentation of contiguous cells in images of bone marrow preparations. A method of cell separation during white blood cell segmentation on images of bone marrow preparations in conditions of hypercellularity of the preparation has been developed. The peculiarity of the proposed method is the use of an approach to segmentation of cell images based on the watershed method with markers. Key stages of the method: the formation of initial markers and building of the watershed lines, threshold binarization, shading inside the outline. The parameters of the separation of contiguous cells are determined. The experiment confirmed the effectiveness of the proposed method. The relative segmentation error was 5 %. The use of the proposed method in information and measurement systems of computer microscopy for automated analysis of bone marrow preparations will help to improve the accuracy of diagnosis of acute leukemia.
  • Публикация
    Только метаданные
    Nevi in children (Part 1) epidermal nevi: Clinical picture, diagnosis, treatment
    (2020) Tamrazova, O. B.; Sergeev, V. Y.; Sergeev, Y. Y.; Nikitaev, V. G.; Pronichev, A. N.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич
    © INRA and Springer-Verlag France 2015.Nevi are congenital formations that appear on the skin from birth or in early childhood, are very common in healthy children and, as a rule, are harmless. The article deals with epidermal nevi formed from epidermal cells. Particular attention is paid to the syndromes of epidermal nevi, which are characterized by a combination of skin rashes with systemic manifestations. Correct diagnosis of different subtypes of nevi, their differential diagnosis with other pigment formations (including melanomas) and non-melanoma skin cancer, as well as the recognition of non-uniform syndromes will help to determine the pediatrician correct tactics of management of patients, further counseling and assess the prognosis of the disease. Early diagnosis using dermatoscopy and modern techniques based on artificial intelligence is most significant in children before the development of progressive symptoms or neurological disorders. In the detection of epidermal nevus syndromes, consultations of related specialists (neurologists, traumatologists, cardiologists, etc.) are recommended.
  • Публикация
    Только метаданные
    Molecular Oncology Diagnosis: A System for Processing Data from Biochips Based on Field Effect Nanotransistors
    (2020) Malsagova, K. A.; Pleshakova, T. O.; Romanova, T. S.; Valueva, A. A.; Nikitaev, V. G.; Pronichev, A. N.; Hamadi, K. I.; Druzhinina, E. A.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature.This article discusses a system for the molecular diagnosis of diseases at the early stages based on biochips using field effect nanotransistors. Practical questions relating to data processing to avoid signal distortion are addressed, as well as problems of signal visualization.
  • Публикация
    Только метаданные
    AFM-MS for Protein Analysis of Plasma Samples of Patients with Ovarian Cancer
    (2019) Kaysheva, A. L.; Pleshakova, T. O.; Malsagova, K. A.; Chingin, K.; Pronichev, A. N.; Nikitaev, V. G.; Ivanov, E. O.; Проничев, Александр Николаевич; Никитаев, Валентин Григорьевич
    An atomic force microscope (AFM) is a molecular detector that allows the recording of individual proteins and protein complexes on the surface of an atomically flat substrate, the AFM chip. Registration of target proteins is carried out after the fishing procedure - catching out of proteins from the volume of the analyzed solution to a surface of a small area (sensory zone of the chip) modified by affinity reagents against the target protein. The use of the procedure of biospecific enrichment makes it possible to effectively concentrate the molecules of the target proteins in an amount sufficient for the subsequent mass spectrometric analysis for early diagnosis of ovarian cancer in blood samples.
  • Публикация
    Только метаданные
    Automated Analysis of the Pigment Network in Dermatoscopic Images of Melanocytic Skin Tumors
    (2019) Tamrazova, O. B.; Sergeev, V. Y.; Sergeev, Y. Y.; Nikitaev, V. G.; Pronichev, A. N.; Kozyreva, A. V.; Polyakov, E. V.; Druzhinina, E. A.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Поляков, Евгений Валерьевич
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature.A method for recognition of the pigment network lines in dermatoscopic images of skin tumors is presented. The method provides calculation of characteristics of the pigment network lines and imaging of the obtained results. Experimental assessment of the effectiveness of the proposed method showed it to be promising for use in melanoma recognition systems.
  • Публикация
    Только метаданные
    A Model for Detecting Structural Elements – Lines – in Digital Images in Oncodermatology
    (2021) Tamrazova, O. B.; Sergeev, V. Y.; Nikitaev, V. G.; Pronichev, A. N.; Otchenashenko, A. I.; Druzhinina, E. A.; Kozyreva, A. V.; Solomatin, M. A.; Kozlov, V. S.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Отченашенко, Александр Иванович; Соломатин, Михаил Андреевич; Козлов, Владимир Сергеевич
    © 2021, Springer Science+Business Media, LLC, part of Springer Nature.The problem of early diagnosis of one of the most dangerous malignant neoplasms of the skin, melanoma, is considered. A model for detecting structural elements (lines) in digital images of skin neoplasms in oncodermatology has been developed. The model is based on adaptive binarization of the initial digital dermatoscopy image of skin les neoplasms ions and subsequent operations of dilation, erosion, skeletonization, and filtration of false line fragments. Test dermatoscopy images of skin neoplasms were visually divided into four groups to conduct the experiment. Optimal parameters of image processing of four groups for the model of detecting structural elements – lines – have been experimentally established. The experimentally determined accuracy of line detection was 95%. This research is the result of interdisciplinary cooperation of dermatologists of the Central Medical Academy of the Administrative Department of the President of the Russian Federation, the Medical Institute of the Russian Peoples’ Friendship University and experts in the field of information and measurement systems of the Engineering and Physical Institute of Biomedicine of the National Research Nuclear University “MEPhI”. The proposed model can be used in the development of computer systems to support medical decision-making in the diagnosis of skin melanoma – a dangerous malignant neoplasm.
  • Публикация
    Только метаданные
    Model of a Decision-Making System for the Diagnosis of Melanoma Using Artificial Intelligence
    (2021) Tamrazova, O. B.; Sergeev, V. Y.; Nikitaev, V. G.; Pronichev, A. N.; Druzhinina, E. A.; Medvedeva, O. A.; Solomatin, M. A.; Никитаев, Валентин Григорьевич; Проничев, Александр Николаевич; Соломатин, Михаил Андреевич
    © 2021, Springer Science+Business Media, LLC, part of Springer Nature.Interdisciplinary approaches to creating high-tech computer systems for the diagnosis of melanoma using artificial intelligence are presented. A model is proposed for the architecture of an interactive expert system. This includes a set of features for a contemporary medical algorithm (the Kittler algorithm) along with a knowledge base and a diagnosis evaluation score for the case under study.