Персона:
Подлепецкий, Борис Иванович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт нанотехнологий в электронике, спинтронике и фотонике
Институт ИНТЭЛ занимается научной деятельностью и подготовкой специалистов в области исследования физических принципов, проектирования и разработки технологий создания компонентной базы электроники гражданского и специального назначения, а также построения современных приборов на её основе. ​Наша основная цель – это создание и развитие научно-образовательного центра мирового уровня в области наноструктурных материалов и устройств электроники, спинтроники, фотоники, а также создание эффективной инновационной среды в области СВЧ-электронной и радиационно-стойкой компонентной базы, источников ТГц излучения, ионно-кластерных технологий материалов.​
Статус
Фамилия
Подлепецкий
Имя
Борис Иванович
Имя

Результаты поиска

Теперь показываю 1 - 5 из 5
Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Combination of Material Processing and Characterization Methods for Miniaturization of Field-Effect Gas Sensor

2023, Samotaev, N., Litvinov, A., Oblov, K., Etrekova, M., Podlepetsky, B., Dzhumaev, P. S., Самотаев, Николай Николаевич, Литвинов, Артур Васильевич, Облов, Константин Юрьевич, Этрекова, Майя Оразгельдыевна, Подлепецкий, Борис Иванович, Джумаев, Павел Сергеевич

The technological approach for the low-scale production of field-effect gas sensors as electronic components for use in non-lab ambient environments is described. In this work, in addition to the mechanical protection of a gas-sensitive structure, an emphasis was also placed on the very topical issue of thermal stabilization around the one temperature point, even if it is several degrees higher than the surrounding one, which will probably also be useful for any type of application for many types of field-effect sensors. Considerable attention was paid to the characterization of the results obtained by various invasive and non-invasive methods for diagnosing the manufactured construction. The technology described in this article occupies an intermediate position between laboratory samples tested in clean rooms with stable ambient atmospheres, and experimental and small-scale production sensors designed for real operating conditions to solve the narrow application of measuring low concentrations of hydrogen.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Structure and Technological Parameters’ Effect on MISFET-Based Hydrogen Sensors’ Characteristics

2023, Podlepetsky, B., Samotaev, N., Etrekova, M., Litvinov, A., Подлепецкий, Борис Иванович, Самотаев, Николай Николаевич, Этрекова, Майя Оразгельдыевна, Литвинов, Артур Васильевич

The influence of structure and technological parameters (STPs) on the metrological characteristics of hydrogen sensors based on MISFETs has been investigated. Compact electrophysical and electrical models connecting the drain current, the voltage between the drain and the source and the voltage between the gate and the substrate with the technological parameters of the n-channel MISFET as a sensitive element of the hydrogen sensor are proposed in a general form. Unlike the majority of works, in which the hydrogen sensitivity of only the threshold voltage of the MISFET is investigated, the proposed models allow us to simulate the hydrogen sensitivity of gate voltages or drain currents in weak and strong inversion modes, taking into account changes in the MIS structure charges. A quantitative assessment of the effect of STPs on MISFET performances (conversion function, hydrogen sensitivity, gas concentration measurement errors, sensitivity threshold and operating range) is given for a MISFET with a Pd-Ta2O5-SiO2-Si structure. In the calculations, the parameters of the models obtained on the basis of the previous experimental results were used. It was shown how STPs and their technological variations, taking into account the electrical parameters, can affect the characteristics of MISFET-based hydrogen sensors. It is noted, in particular, that for MISFET with submicron two-layer gate insulators, the key influencing parameters are their type and thickness. Proposed approaches and compact refined models can be used to predict performances of MISFET-based gas analysis devices and micro-systems.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Thermal Conductivity Gas Sensors for High-Temperature Applications

2024, Samotaev, N., Podlepetsky, B., Mashinin, M., Ivanov, I., Obraztsov, I., Oblov, K., Dzhumaev, P., Самотаев, Николай Николаевич, Подлепецкий, Борис Иванович, Машинин, Михаил Олегович, Иванов, Игорь Александрович, Образцов, Иван Сергеевич, Облов, Константин Юрьевич, Джумаев, Павел Сергеевич

This paper describes a fast and flexible microfabrication method for thermal conductivity gas sensors useful in high-temperature applications. The key parts of the sensor, the microheater and the package, were fabricated from glass-coated platinum wire and the combination of laser micromilling (ablation) of already-sintered monolithic ceramic materials and thick-film screen-printing technologies. The final thermal conductivity gas sensor was fabricated in the form of a complete MEMS device in a metal ceramic package, which could be used as a compact miniaturized surface-mounted device for soldering to standard PCB. Functional test results of the manufactured sensor are presented, demonstrating their full suitability for gas sensing applications and indicating that the obtained parameters are at a level comparable to those of standard industrially produced sensors. The results of the design and optimization principles of applied methods are discussed with regard to possible wider applications in thermal gas sensor prototyping in the future. The advantage of the developed sensors is their ability to operate in air environments under high temperatures of 900 ‚шC and above. The sensor element material and package metallization were insensitive to oxidation compared with classical sensor-solution-based metalў??glass packages and silicone MEMS membranes, which exhibit mechanical stress at temperatures above 700 ‚шC.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Performance Degradations of MISFET-Based Hydrogen Sensors with a Pd-Ta 2 O 5 -SiO 2 -Si Structure During Long-Term Operation

2019, Kovalenko, A., Podlepetsky, B., Samotaev, N., Nikiforova, M., Подлепецкий, Борис Иванович, Самотаев, Николай Николаевич

We present the generalized experimental results of performance degradation of hydrogen sensors based on metal-insulator-semiconductor field effect transistor (MISFET)with the structure Pd-Ta2O5-SiO2-Si. The n-channel MISFET elements were fabricated on silicon single chips together with temperature sensors and heater-resistors by means of conventional -technology. Two hundred cycles of responses to different hydrogen concentrations were measured during eight weeks using special measuring and temperature stabilization circuitries with a feedback loop based on the chip's thermo-sensor and heater. We show how the response parameters change during long-term tests of sensors under repeated hydrogen impacts. There were two stages of time-dependent response instability, the degradation of which depends on operating conditions, hydrogen concentrations, and time. To interpret results, we proposed the models, parameters of which were calculated using experimental data. These models can be used to predict performances of MISFET-based gas analysis devices for long-term operation.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors

2023, Litvinov, A., Etrekova, M., Podlepetsky, B., Samotaev, N., Oblov, K., Литвинов, Артур Васильевич, Этрекова, Майя Оразгельдыевна, Подлепецкий, Борис Иванович, Самотаев, Николай Николаевич, Облов, Константин Юрьевич

The features of the wide band gap SiC semiconductor use in the capacitive MOSFE sensors structure in terms of the hydrogen gas sensitivity effect, the response speed, and the measuring signals optimal parameters are studied. Sensors in a high-temperature ceramic housing with the Me/Ta2O5/SiCn+/4H-SiC structures and two types of gas-sensitive electrodes were made: Palladium and Platinum. The effectiveness of using Platinum as an alternative to Palladium in the MOSFE-Capacitor (MOSFEC) gas sensors high-temperature design is evaluated. It is shown that, compared with Silicon, the use of Silicon Carbide increases the response rate, while maintaining the sensors high hydrogen sensitivity. The operating temperature and test signal frequency influence for measuring the sensor s capacitance on the sensitivity to H2 have been studied.