Publication: Painleve analysis and traveling wave solutions of the sixth order differential equation with non-local nonlinearity
Дата
2021
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Аннотация
© 2021 Elsevier GmbHIn this paper, we study a nonlinear partial differential equation for describing high dispersion optical soliton with non-local nonlinearity. Taking into account the traveling wave reduction, we get system of ordinary differential equations (ODEs) for real and imaginary parts of the original equation. To determine the integrability of equation we apply the Painlevé test for analysis of obtained ODE system. We illustrate that the system of equations does not have the Painlevé property since there is only one integer Fuchs index. However using the Painlevé data we find the compatibility conditions for the ODE system. Under these conditions, the traveling wave solution of nonlinear differential equations are constructed and illustrated.
Описание
Ключевые слова
Цитирование
Kudryashov, N. A. Painleve analysis and traveling wave solutions of the sixth order differential equation with non-local nonlinearity / Kudryashov, N.A., Safonova, D.V. // Optik. - 2021. - 244. - 10.1016/j.ijleo.2021.167586
URI
https://www.doi.org/10.1016/j.ijleo.2021.167586
https://www.scopus.com/record/display.uri?eid=2-s2.0-85109459477&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000686593700004
https://openrepository.mephi.ru/handle/123456789/24327
https://www.scopus.com/record/display.uri?eid=2-s2.0-85109459477&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000686593700004
https://openrepository.mephi.ru/handle/123456789/24327