Publication:
Painleve analysis and traveling wave solutions of the sixth order differential equation with non-local nonlinearity

dc.contributor.authorKudryashov, N. A.
dc.contributor.authorSafonova, D. V.
dc.contributor.authorКудряшов, Николай Алексеевич
dc.contributor.authorСафонова, Дарья Владимировна
dc.date.accessioned2024-11-29T17:19:43Z
dc.date.available2024-11-29T17:19:43Z
dc.date.issued2021
dc.description.abstract© 2021 Elsevier GmbHIn this paper, we study a nonlinear partial differential equation for describing high dispersion optical soliton with non-local nonlinearity. Taking into account the traveling wave reduction, we get system of ordinary differential equations (ODEs) for real and imaginary parts of the original equation. To determine the integrability of equation we apply the Painlevé test for analysis of obtained ODE system. We illustrate that the system of equations does not have the Painlevé property since there is only one integer Fuchs index. However using the Painlevé data we find the compatibility conditions for the ODE system. Under these conditions, the traveling wave solution of nonlinear differential equations are constructed and illustrated.
dc.identifier.citationKudryashov, N. A. Painleve analysis and traveling wave solutions of the sixth order differential equation with non-local nonlinearity / Kudryashov, N.A., Safonova, D.V. // Optik. - 2021. - 244. - 10.1016/j.ijleo.2021.167586
dc.identifier.doi10.1016/j.ijleo.2021.167586
dc.identifier.urihttps://www.doi.org/10.1016/j.ijleo.2021.167586
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85109459477&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000686593700004
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/24327
dc.relation.ispartofOptik
dc.titlePainleve analysis and traveling wave solutions of the sixth order differential equation with non-local nonlinearity
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume244
relation.isAuthorOfPublicationffa3e9b3-afd3-483c-a8cf-dd71c76020c4
relation.isAuthorOfPublication6cda402b-770f-4c0e-b837-0ddfa66aaa5b
relation.isAuthorOfPublication.latestForDiscoveryffa3e9b3-afd3-483c-a8cf-dd71c76020c4
relation.isOrgUnitOfPublicationdcdb137c-0528-46a5-841b-780227a67cce
relation.isOrgUnitOfPublication.latestForDiscoverydcdb137c-0528-46a5-841b-780227a67cce
Файлы
Коллекции