Персона: Грязнова, Ольга Юрьевна
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Грязнова
Имя
Ольга Юрьевна
Имя
6 results
Результаты поиска
Теперь показываю 1 - 6 из 6
- ПубликацияТолько метаданныеFlash drug release from nanoparticles accumulated in the targeted blood vessels facilitates the tumour treatment(2022) Zelepukin, I. V.; Griaznova, O. Y.; Shevchenko, K. G.; Ivanov, A. V.; Baidyuk, E. V.; Serejnikova, N. B.; Volovetskiy, A. B.; Deyev, S. M.; Zvyagin, A. V.; Грязнова, Ольга Юрьевна; Деев, Сергей МихайловичTumour microenvironment hinders nanoparticle transport deep into the tissue precluding thorough treatment of solid tumours and metastatic nodes. We introduce an anticancer drug delivery concept termed FlaRE (Flash Release in Endothelium), which represents alternative to the existing approaches based on enhanced permeability and retention effect. This approach relies on enhanced drug-loaded nanocarrier accumulation in vessels of the target tumour or metastasised organ, followed by a rapid release of encapsulated drug within tens of minutes. It leads to a gradient-driven permeation of the drug to the target tissue. This pharmaceutical delivery approach is predicted by theoretical modelling and validated experimentally using rationally designed MIL-101(Fe) metal-organic frameworks. Doxorubicin-loaded MIL-101 nanoparticles get swiftly trapped in the vasculature of the metastasised lungs, disassemble in the blood vessels within 15 minutes and release drug, which rapidly impregnates the organ. A significant improvement of the therapeutic outcome is demonstrated in animal models of early and late-stage B16-F1 melanoma metastases with 11-fold and 4.3-fold decrease of pulmonary melanoma nodes, respectively. © 2022, The Author(s).
- ПубликацияТолько метаданныеLaser Synthesized Core-Satellite Fe-Au Nanoparticles for Multimodal In Vivo Imaging and In Vitro Photothermal Therapy(2022) Komlev, A. S.; Gorin, D. A.; Griaznova, O. Yu.; Belyaev, I. B.; Sogomonyan, A. S.; Zelepukin, I. V.; Tikhonowski, G. V.; Popov, A. A.; Nikitin, P. I.; Kabashin, A. V.; Deyev, S. M.; Грязнова, Ольга Юрьевна; Согомонян, Анна Самвеловна; Тихоновский, Глеб Валерьевич; Попов, Антон Александрович; Никитин, Петр Иванович; Кабашин, Андрей Викторович; Деев, Сергей Михайлович© 2022 by the authors. Licensee MDPI, Basel, Switzerland.Hybrid multimodal nanoparticles, applicable simultaneously to the noninvasive imaging and therapeutic treatment, are highly demanded for clinical use. Here, Fe-Au core-satellite nanoparticles prepared by the method of pulsed laser ablation in liquids were evaluated as dual magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents and as sensitizers for laser-induced hyperthermia of cancer cells. The biocompatibility of Fe-Au nanoparticles was improved by coating with polyacrylic acid, which provided excellent colloidal stability of nanoparticles with highly negative ζ-potential in water (−38 ± 7 mV) and retained hydrodynamic size (88 ± 20 nm) in a physiological environment. The ferromagnetic iron cores offered great contrast in MRI images with r2 = 11.8 ± 0.8 mM−1 s−1 (at 1 T), while Au satellites showed X-ray attenuation in CT. The intravenous injection of nanoparticles enabled clear tumor border visualization in mice. Plasmonic peak in the Fe-Au hybrids had a tail in the near-infrared region (NIR), allowing them to cause hyperthermia under 808 nm laser exposure. Under NIR irradiation Fe-Au particles provided 24.1 °C/W heating and an IC50 value below 32 µg/mL for three different cancer cell lines. Taken together, these results show that laser synthesized Fe-Au core-satellite nanoparticles are excellent theranostic agents with multimodal imaging and photothermal capabilities.
- ПубликацияТолько метаданныеDirect photoacoustic measurement of silicon nanoparticle degradation promoted by a polymer coating(2022) Mashkovich, E. A.; Deryabin, M. S.; Kurin, V. V.; Bakunov, M. I.; Zelepukin, I. V.; Lipey, N. A.; Popov, A. A.; Shipunova, V. O.; Yu. , Griaznova, O.; Nikitin, P. I.; Kabashin, A. V.; Deyev, S. M.; Zvyagin, A. V.; Попов, Антон Александрович; Грязнова, Ольга Юрьевна; Никитин, Петр Иванович; Кабашин, Андрей Викторович; Деев, Сергей Михайлович© 2021 Elsevier B.V.Nanomaterials with controllable biodegradation properties respond to the main challenge of cancer nanomedicine to minimise side effects and maximise the delivery efficacy to tumours. These biodegradation properties vary from clear aqueous solutions to protein-abundant biological fluids. A photoacoustic method suitable for in vitro quantification of highly scattering colloids with optical absorption properties is introduced and demonstrated by determination of the degradation rate of laser-synthesized silicon nanoparticles (Si NPs) in turbid serum solutions. In vitro screening of a variety of polymer surface-coatings of Si NPs revealed a stand-alone property of polyallylamine (PAA) to accelerate the Si NP dissolution. PAA-coated Si NP half-life was measured ∼ 100-min in aqueous solutions and slowed down to ∼ 24 h in serum. As-produced PAA-coated Si NPs appeared suitable for blockade of the mononuclear phagocyte system. Pre-treatment with PAA-Si NPs caused 1.4-times reduced uptake of magnetic particles by human THP-1 cells in vitro and a 13-fold increase of the magnetic particle delivery to the B16-F1 xenograft tumours in vivo. The demonstrated photoacoustic method is believed to facilitate design and screening of biodegradable materials suitable for in vivo applications such as controlled drug release.
- ПубликацияТолько метаданныеMIL-53 (Al) metal-organic frameworks as potential drug carriers(2021) Kolokolnikov, V. N.; Griaznova, O. Yu.; Zelepukin, I. V.; Tikhonowski, G. V.; Deyev, S. M.; Грязнова, Ольга Юрьевна; Тихоновский, Глеб Валерьевич; Деев, Сергей Михайлович© 2021 Institute of Physics Publishing. All rights reserved.One of the challenges of the medicine is to improve the chemical stability of drugs and to prevent their premature biodegradation before reaching the therapeutic target. Various nanoparticles were used to solve this problem, but low drug loading efficiency limited their biomedical applications. Metal organic frameworks are promising candidates for drug delivery since they have extremely high surface area and regular porosity. In this study, we prepared high-crystalline MIL-53 frameworks based on aluminium and 2-aminoterephtalic acid by microwave-assisted synthesis and evaluated their properties as drug carriers. Drug loading of chemotherapeutic and diagnostic molecules of different nature riches value of 34% by particle weight, significantly higher than those of other reported solid nanoparticles. Therefore, our results make MIL-53 (Al) frameworks promising candidate for drug delivery.
- ПубликацияТолько метаданныеPhotoinduced Toxicity Caused by Gold Nanozymes and Photodynamic Dye Encapsulated in Submicron Polymer Shell(2024) Sergeev, I. S.; Maksimova, E. A.; Moiseeva, E. O.; Griaznova, O. Yu.; Deyev, S. M.; Грязнова, Ольга Юрьевна; Деев, Сергей Михайлович
- ПубликацияОткрытый доступX-ray Contrast Properties of Bismuth-Based Nanoformulations(2023) Savinov, M. S.; Griaznova, O. Y.; Tikhonowski, G. V.; Popov, A. A.; Klimentov, S. M.; Савинов, Максим Сергеевич; Грязнова, Ольга Юрьевна; Тихоновский, Глеб Валерьевич; Попов, Антон Александрович; Климентов, Сергей Михайлович