Персона:
Самохвалов, Павел Сергеевич

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Самохвалов
Имя
Павел Сергеевич
Имя

Результаты поиска

Теперь показываю 1 - 10 из 42
  • Публикация
    Открытый доступ
    Strong increase in the effective two-photon absorption cross-section of excitons in quantum dots due to the nonlinear interaction with localized plasmons in gold nanorods
    (2021) Sanchez-Iglesias, A.; Grzelczak, M.; Rakovich, Y.; Krivenkov, V.; Samokhvalov, P.; Nabiev, I.; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    © 2021 The Royal Society of Chemistry.Excitons in semiconductor quantum dots (QDs) feature high values of the two-photon absorption cross-sections (TPACSs), enabling applications of two-photon-excited photoluminescence (TPE PL) of QDs in biosensing and nonlinear optoelectronics. However, efficient TPE PL of QDs requires high-intensity laser fields, which limits these applications. There are two possible ways to increase the TPE PL of QDs: by increasing their photoluminescence quantum yield (PLQY) or by further increasing the TPACS. Plasmonic nanoparticles (PNPs) may act as open nanocavities for increasing the PLQY via the Purcell effect, but this enhancement is strictly limited by the maximum possible PLQY value of 100%. Here we directly investigated the effect of PNPs on the effective TPACS of excitons in QDs. We have found that effective TPACS of excitons in a QD-PMMA thin film can be increased by a factor of up to 12 near the linearly excited gold nanorods (GNRs). Using gold nanospheres (GNSs), in which plasmons cannot be excited in the infrared range, as a control system, we have shown that, although both GNSs and GNRs increase the recombination rate of excitons, the TPACS is increased only in the case of GNRs. We believe that the observed effect of TPACS enhancement is a result of the nonlinear interaction of the plasmons in GNRs with excitons in QDs, which we have supported by numerical simulations. The results show the way to the rational design of the spectral features of plasmon-exciton hybrids for using them in biosensing and nonlinear optoelectronics.
  • Публикация
    Открытый доступ
    Synergy of Excitation Enhancement and the Purcell Effect for Strong Photoluminescence Enhancement in a Thin-Film Hybrid Structure Based on Quantum Dots and Plasmon Nanoparticles
    (2020) Rakovich, Y. P.; Krivenkov, V.; Samokhvalov, P.; Nabiev, I.; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    Reliable control of spontaneous radiation from quantum emitters, such as quantum dots (QDs), is an extremely important problem in quantum science, nanophotonics, and engineering. The QD photoluminescence (PL) may be enhanced near plasmon nanoparticles because of excitation field enhancement or the Purcell effect. However, both of these effects have their specific limitations. The excitation enhancement is usually accompanied by a decrease in the PL quantum yield (QY) due to the plasmon-induced energy transfer, and the Purcell effect cannot significantly enhance the PL of QDs with an initially high QY because of the obvious limitation of the QY by the value of 100%. Here, we have shown that the synergistic combination of excitation enhancement caused by silver nanospheres and the Purcell effect caused by silver nanoplates in the same QD-in-polymer hybrid thin-film nanostructure permits simultaneous increases in the radiative and excitation rates to be obtained. This overcomes the limitations of each individual effect and yields a synergistic PL increase (+1320%) greater than the sum of the PL enhancements determined by each effect alone (+70% and +360%).
  • Публикация
    Открытый доступ
    Hybrid fluorescent liquid crystalline composites: Directed assembly of quantum dots in liquid crystalline block copolymer matrices
    (2020) Bugakov, M.; Abdullaeva, S.; Abramchuk, S.; Shibaev, V.; Samokhvalov, P.; Самохвалов, Павел Сергеевич
    This journal is © 2020 The Royal Society of Chemistry.Hybrid fluorescent liquid crystalline (LC) composites containing inorganic quantum dots (QDs) are promising materials for many applications in optics, nanophotonics and display technology, combining the superior emission capability of QDs with the externally controllable optical properties of LCs. In this work, we propose the hybrid LC composites that were obtained by embedding CdSe/ZnS QDs into a series of host LC block copolymers of different architectures by means of a two-stage ligand exchange procedure. The ABA/BAB triblock copolymers and AB diblock copolymers with different polymerization degrees are composed of nematogenic phenyl benzoate acrylic monomer units and poly(4-vinylpyridine) blocks, which are capable of binding to the QD surface. Our results clearly show that the spatial distribution of QDs within composite films as well as the formation of QD aggregates can be programed by varying the structure of the host block copolymer. The obtained composites form a nematic LC phase, with isotropization temperatures being close to those of the initial host block copolymers. In addition, the influence of the molecular architecture of the host block copolymers on fluorescence properties of the obtained composites is considered. The described strategy for the QD assembly should provide a robust and conventional route for the design of highly ordered hierarchical hybrid materials for many practical applications.
  • Публикация
    Открытый доступ
    Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes
    (2020) Alexandrov, A.; Zvaigzne, M. A.; Lypenko, D.; Nabiev, I.; Samokhvalov, P.; Лыпенко, Дмитрий Александрович; Набиев, Игорь Руфаилович; Самохвалов, Павел Сергеевич
    © 2020, The Author(s).Colloidal quantum dots and other semiconductor nanocrystals are essential components of next-generation lighting and display devices. Due to their easily tunable and narrow emission band and near-unity fluorescence quantum yield, they allow cost-efficient fabrication of bright, pure-color and wide-gamut light emitting diodes (LEDs) and displays. A critical improvement in the quantum dot LED (QLED) technology was achieved when zinc oxide nanoparticles (NPs) were first introduced as an electron transport layer (ETL) material, which tremendously enhanced the device brightness and current efficiency due to the high mobility of electrons in ZnO and favorable alignment of its energy bands. During the next decade, the strategy of ZnO NP doping allowed the fabrication of QLEDs with a brightness of about 200 000 cd/m2 and current efficiency over 60 cd/A. On the other hand, the known ZnO doping approaches rely on a very fine tuning of the energy levels of the ZnO NP conduction band minimum; hence, selection of the appropriate dopant that would ensure the best device characteristics is often ambiguous. Here we address this problem via detailed comparison of QLEDs whose ETLs are formed by a set of ZnO NPs doped with Al, Ga, Mg, or Li. Although magnesium-doped ZnO NPs are the most common ETL material used in recently designed QLEDs, our experiments have shown that their aluminum-doped counterparts ensure better device performance in terms of brightness, current efficiency and turn-on voltage. These findings allow us to suggest ZnO NPs doped with Al as the best ETL material to be used in future QLEDs.
  • Публикация
    Только метаданные
    Enhanced fluorescence emission of a single quantum dot in a porous silicon photonic crystal-plasmonic hybrid resonator
    (2024) Granizo, E.; Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Гранисо Роман, Эвелин Алехандра; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    Abstract Currently, much interest is attracted to investigating the potential of hybrid systems that exhibit plasmon-induced photoluminescence (PL) enhancement of quantum emitters in terms of optoelectronics and biosensing applications. The implementation of these systems based on photonic microcavities offers benefits due to a stronger localization of the field within the resonant cavity. Porous silicon is one of interesting materials for engineering such microcavities thanks to the simplicity of its fabrication and the possibility to embed emitters from the solution into a ready-made resonator. In this theoretical study, the fluorescence enhancement of a quantum dot (QD) in a hybrid system based on a porous silicon microcavity (pSiMC) and silver nanoplatelets (AgNPs) was investigated using finite element method (FEM) numerical simulations. For this purpose, infinite arrays were simulated by using a periodic unit cell. The pSiMC was designed as two Ћ? /4 distributed Bragg reflectors with alternating refractive indices and a cavity layer of a double thickness between them. For comparison, simulations were also performed for an AgNP and a QD in a reference monolayer with a constant refractive index without a microcavity structure. The results show QD fluorescence enhancement in the AgNP/pSiMC hybrid system, mainly due to the higher excitation rate.
  • Публикация
    Только метаданные
    Cavity-enhanced photoluminescence of semiconductor quantum dot thin films under two-photon excitation
    (2021) Dovzhenko, D.; Saanchez-Iglesias, A.; Grzelczak, M.; Rakovich, Y.; Krivenkov, V.; Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    © 2021 SPIE.Semiconductor quantum dots (QDs) feature high values of the two-photon absorption (TPA) cross-sections, enabling their applications in biosensing and nonlinear optoelectronics. However, the efficient QD photoluminescence (PL) intensity caused by TPA requires high-intensity laser excitation which hinders these applications. Placing the QDs in the micro- or nanocavities leads to a change in their PL properties. Particularly, near plasmon nanoparticles (open nanocavities) the local field may be enhanced by the localized plasmons, which will lead to an increase of the TPA efficiency. Alternatively, placing QDs in a photonic crystal may boost an increase of their PL quantum yield due to the Purcell effect and also increase their PL intensity at the photonic mode wavelength due to the redistribution of the density of photonic states. In this study, we have fabricated thin-film hybrid materials based on QDs placed near plasmonic nanoparticles or in the photonic crystal. We have demonstrated a 4.3-fold increase of the radiative recombination rate of QDs in the photonic crystal cavity under the two-photon excitation, resulting in the increase of the PL quantum yield. In turn, the coating of the QDs films with the gold nanorods led to the 12-fold increase in TPA at the maximum of the plasmon spectrum. Our results pave the way to a strong increase of the PL efficiency of the QDs under two-photon excitation for their applications in biosensing and nonlinear optoelectronics.
  • Публикация
    Только метаданные
    Conjugates of ultrasmall quantum dots and acridine derivatives as prospective nanoprobes for intracellular investigations
    (2021) Laronze-Cochard, M.; Sapi, J.; Karaulov, A.; Linkov, P.; Samokhvalov, P.; Baryshnikova, M.; Nabiev, I.; Самохвалов, Павел Сергеевич; Барышникова, Мария Анатольевна; Набиев, Игорь Руфаилович
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Designing nanoprobes in which quantum dots (QDs) are used as photoluminescent labels is an especially promising line of research due to their possible medical applications ranging from disease diagnosis to drug delivery. In spite of the significant progress made in designing such nanoprobes, the properties of their individual components, i.e., photoluminescent QDs, vectorization moieties, and pharmacological agents, still require further optimization to enhance the efficiency of diagnostic or therapeutic procedures. Here, we have developed a method of engineering compact multifunctional nanoprobes based on functional components with optimized properties: bright photoluminescence of CdSe/ZnS (core/shell) QDs, a compact and effective antitumor agent (an acridine derivative), and direct conjugation of the components via electrostatic interaction, which provides a final hydrodynamic diameter of nanoprobes smaller than 15 nm. Due to the possibility of conjugating various biomolecules with hydroxyl and carboxyl moieties to QDs, the method represents a versatile approach to the biomarker-recognizing molecule imaging of the delivery of the active substance as part of compact nanoprobes.
  • Публикация
    Только метаданные
    Microfluidics and Nanofluidics in Strong Light–Matter Coupling Systems
    (2024) Granizo, E.; Kriukova, I.; Escudero-Villa, P.; Samokhvalov, P.; Nabiev, I.; Гранисо Роман, Эвелин Алехандра; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    The combination of micro- or nanofluidics and strong light-matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. Strong light-matter coupling is achieved by placing a dipole (e.g., an atom or a molecule) into a confined electromagnetic field, with molecular transitions being in resonance with the field and the coupling strength exceeding the average dissipation rate. Despite intense research and encouraging results in this field, some challenges still need to be overcome, related to the fabrication of nano- and microscale optical cavities, stability, scaling up and production, sensitivity, signal-to-noise ratio, and real-time control and monitoring. The goal of this paper is to summarize recent developments in micro- and nanofluidic systems employing strong light-matter coupling. An overview of various methods and techniques used to achieve strong light-matter coupling in micro- or nanofluidic systems is presented, preceded by a brief outline of the fundamentals of strong light-matter coupling and optofluidics operating in the strong coupling regime. The potential applications of these integrated systems in sensing, optofluidics, and quantum technologies are explored. The challenges and prospects in this rapidly developing field are discussed.
  • Публикация
    Открытый доступ
    Quantum dot–polyfluorene composites for white-light-emitting quantum dot-based leds
    (2020) Il'gach, D.; Yakimansky, A.; Zvaigzne, M.; Domanina, I.; Nabiev, I.; Samokhvalov, P.; Набиев, Игорь Руфаилович; Самохвалов, Павел Сергеевич
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Colloidal quantum dots (QDs) are a promising luminescent material for the development of next generation hybrid light-emitting diodes (QDLEDs). In particular, QDs are of great interest in terms of the development of solid-state light sources with an emission spectrum that mimics daylight. In this study, we used CdSe(core)/ZnS/CdS/ZnS(shell) QDs with organic ligands mimicking polyfluorene and its modified derivatives to obtain QD–polymer composites emitting white light. We found that the emission of the composites obtained by spin-coating, being strongly dependent on the chemical structure of the polymer matrix and the QD-to-polymer mass ratio, can be accurately controlled and adjusted to bring its emission spectrum close to the spectrum of daylight (CIE coordinates: 1931 0.307; 0.376). Moreover, the light emission of these composites has been found to be temporally stable, which is due to the minimal structural instability and volume-uniform charge and energy transfer properties. Thus, the use of the synthesized polyfluorene-based organic ligands with controllable chemical structures adaptable to the structure of the polymer matrix can significantly increase the stability of white light emission from QD composites, which can be considered promising electroluminescent materials for fabrication of white QDLEDs.
  • Публикация
    Только метаданные
    Determination of the Single-Exciton Two-Photon Absorption Cross Sections of Semiconductor Nanocrystals through the Measurement of Saturation of Their Two-Photon-Excited Photoluminescence
    (2020) Karaulov, A.; Krivenkov, V.; Samokhvalov, P.; Dyagileva, D.; Nabiev, I.; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    © 2020 American Chemical Society.Conventional approaches to the determination of the two-photon absorption cross-section (TPACS) of fluorescent semiconductor nanocrystals, including quantum dots (QDs) and nanoplatelets (NPLs), cannot be applied to samples with unknown concentrations and low optical densities and may be inaccurate in the case of multiexciton nanocrystal excitation. Here, we have studied the two-photon-excited photoluminescence saturation in QD and NPL samples and propose a novel technique for determining of their TPACS from the parameters of this process. The technique allows the measurement of the TPACSs of single exciton states in the samples of unknown concentration, as well as in thin films with ultralow optical densities. The calculated values agreed with the results obtained by conventional methods. The new technique paves new ways to studying small amounts of fluorescent nanocrystals of unknown quantity under two-photon excitation.