Publication:
Determination of the Single-Exciton Two-Photon Absorption Cross Sections of Semiconductor Nanocrystals through the Measurement of Saturation of Their Two-Photon-Excited Photoluminescence

Дата
2020
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Выпуск журнала
Аннотация
© 2020 American Chemical Society.Conventional approaches to the determination of the two-photon absorption cross-section (TPACS) of fluorescent semiconductor nanocrystals, including quantum dots (QDs) and nanoplatelets (NPLs), cannot be applied to samples with unknown concentrations and low optical densities and may be inaccurate in the case of multiexciton nanocrystal excitation. Here, we have studied the two-photon-excited photoluminescence saturation in QD and NPL samples and propose a novel technique for determining of their TPACS from the parameters of this process. The technique allows the measurement of the TPACSs of single exciton states in the samples of unknown concentration, as well as in thin films with ultralow optical densities. The calculated values agreed with the results obtained by conventional methods. The new technique paves new ways to studying small amounts of fluorescent nanocrystals of unknown quantity under two-photon excitation.
Описание
Ключевые слова
Цитирование
Determination of the Single-Exciton Two-Photon Absorption Cross Sections of Semiconductor Nanocrystals through the Measurement of Saturation of Their Two-Photon-Excited Photoluminescence / Karaulov, A. [et al.] // ACS Photonics. - 2020. - 10.1021/acsphotonics.9b01820
Коллекции