Персона: Набиев, Игорь Руфаилович
Загружается...
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Руководитель научной группы "НАНО-ФОТОН"
Фамилия
Набиев
Имя
Игорь Руфаилович
Имя
109 results
Результаты поиска
Теперь показываю 1 - 10 из 109
- ПубликацияТолько метаданныеOptimization of the Conditions of InP Nanocrystal Synthesis Using Tris(amino)phosphines as Phosphorus Precursors(2023) Zarezin, D.; Nabiev, I.; Samokhvalov, P.; Зарезин, Данил Петрович; Набиев, Игорь Руфаилович; Самохвалов, Павел Сергеевич
- ПубликацияТолько метаданныеQuantum dot-based plasmon-exciton emitters with improved one- And two-photon emission properties(2021) Rakovich, Y.; Krivenkov, V.; Samokhvalov, P.; Nabiev, I.; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович© 2021 SPIE.Photoluminescence (PL) properties of semiconductor quantum dots (QDs) may be significantly improved by forming hybrid structures with plasmonic nanoparticles (PNPs). In general, three main effects can be observed when QDs are placed near PNPs - a local enhancement of excitation, acceleration of radiative recombination rate (Purcell effect), and acceleration of nonradiative relaxation rate due to the metal-induced energy transfer. All these effects lead to an increase in PL quantum yield (QY), excitonic (EX) and biexcitonic (BX) states and to the strong reduction of PL lifetime. In this study, we investigated the EX and BX PL parameters of single QDs in the vicinity of PNPs at different overlapping between the excitation wavelength, QDs PL, and PNPs extinction spectra. Here, we have fabricated thin films of QDs separated from the environment by the polymer spacer, and placed PNPs atop of these structures under the continuous observation of optical parameter of the same single QD. We have found that the excitation may be strongly increased in the case of a strong spectral overlap between excitation band and PNPs extinction. Nevertheless, the EX QY is strongly reduced by the energy transfer. In the case of strong spectral overlap between QDs PL and PNPs extinction, the radiative rate is increased, which leads to an increase of both EX and BX QYs and to a near-unity BX-to-EX QY ratio. Finally, we managed to combine these two effects in one material with a synergistically increased PL intensity, ultrashort PL lifetime, and levelling of EX and BX QY.
- ПубликацияТолько метаданныеMachine learning–assisted colloidal synthesis: A review(2024) Gulevich, D. G.; Nabiev, I. R.; Samokhvalov, P. S.; Гулевич, Даяна Галимовна; Набиев, Игорь Руфаилович; Самохвалов, Павел СергеевичArtificial intelligence (AI) technologies, including machine learning and deep learning, have become ingrained in both everyday life and in scientific research. In chemistry, these algorithms are most commonly used for the development of new materials and drugs, recognition of microscopy images, and analysis of spectral data. Finding relationships between the parameters of chemical synthesis and the properties of the resultant materials is often challenging because of the large number of variations of the temperature and time of synthesis, the chemical composition and ratio of precursors, etc. Applying machine and deep learning to the organization of chemical experiments will considerably reduce the empiricism issues in chemical research. Colloidal nanomaterials, whose morphology, size, and phase composition are influenced directly not only by the synthesis conditions, but the reagents or solvents purity and other indistinct factors are highly demanded in optoelectronics, catalysis, biological imaging, and sensing applications. In recent years, AI methods have been increasingly used for determining the key factors of synthesis and selecting the optimal reaction conditions for obtaining nanomaterials with precisely controlled and reproducible characteristics. The purpose of this review is to analyze the current progress in the AI-assisted optimization of the most common methods of production of colloidal nanomaterials, including colloidal and hydrothermal syntheses, chemical reduction, and synthesis in flow reactors.
- ПубликацияТолько метаданныеExperimental and theoretical study of a flow photoreactor operating in the strong light-matter coupling regime(2024) Granizo, E. A.; Kriukova, I. S.; Samokhvalov, P. S.; Nabiec, I. R.; Гранисо Роман, Эвелин Алехандра; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
- ПубликацияТолько метаданныеQuantum Dot-Based Nanosensors for In Vitro Detection of Mycobacterium tuberculosis(2024) Nikolaev,V.V.; Lepekhina,T.B.; Alliluev,A.S.; Bidram,E.; Sokolov,P.M.; Nabiev,I.R.; Соколов, Павел Михайлович; Набиев, Игорь РуфаиловичDespite the existing effective treatment methods, tuberculosis (TB) is the second most deadly infectious disease, its carriers in the latent and active phases accounting for more than 20% of the world population. An effective method for controlling TB and reducing TB mortality is regular population screening aimed at diagnosing the latent form of TB and taking preventive and curative measures. Numerous methods allow diagnosing TB by directly detecting Mycobacterium tuberculosis (M.tb) biomarkers, including M.tb DNA, proteins, and specific metabolites or antibodies produced by the host immune system in response to M.tb. PCR, ELISA, immunofluorescence and immunochemical analyses, flow cytometry, and other methods allow the detection of M.tb biomarkers or the host immune response to M.tb by recording the optical signal from fluorescent or colorimetric dyes that are components of the diagnostic systems. Current research in biosensors is aimed at increasing the sensitivity of detection, a promising approach being the use of fluorescent quantum dots as brighter and more photostable optical tags. Here, we review current methods for the detection of M.tb biomarkers using quantum dot-based nanosensors and summarize data on the M.tb biomarkers whose detection can be made considerably more sensitive by using these sensors.
- ПубликацияТолько метаданныеEnhanced fluorescence emission of a single quantum dot in a porous silicon photonic crystal-plasmonic hybrid resonator(2024) Granizo, E.; Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Гранисо Роман, Эвелин Алехандра; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь РуфаиловичAbstract Currently, much interest is attracted to investigating the potential of hybrid systems that exhibit plasmon-induced photoluminescence (PL) enhancement of quantum emitters in terms of optoelectronics and biosensing applications. The implementation of these systems based on photonic microcavities offers benefits due to a stronger localization of the field within the resonant cavity. Porous silicon is one of interesting materials for engineering such microcavities thanks to the simplicity of its fabrication and the possibility to embed emitters from the solution into a ready-made resonator. In this theoretical study, the fluorescence enhancement of a quantum dot (QD) in a hybrid system based on a porous silicon microcavity (pSiMC) and silver nanoplatelets (AgNPs) was investigated using finite element method (FEM) numerical simulations. For this purpose, infinite arrays were simulated by using a periodic unit cell. The pSiMC was designed as two Ћ? /4 distributed Bragg reflectors with alternating refractive indices and a cavity layer of a double thickness between them. For comparison, simulations were also performed for an AgNP and a QD in a reference monolayer with a constant refractive index without a microcavity structure. The results show QD fluorescence enhancement in the AgNP/pSiMC hybrid system, mainly due to the higher excitation rate.
- ПубликацияТолько метаданныеCavity-enhanced photoluminescence of semiconductor quantum dot thin films under two-photon excitation(2021) Dovzhenko, D.; Saanchez-Iglesias, A.; Grzelczak, M.; Rakovich, Y.; Krivenkov, V.; Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович© 2021 SPIE.Semiconductor quantum dots (QDs) feature high values of the two-photon absorption (TPA) cross-sections, enabling their applications in biosensing and nonlinear optoelectronics. However, the efficient QD photoluminescence (PL) intensity caused by TPA requires high-intensity laser excitation which hinders these applications. Placing the QDs in the micro- or nanocavities leads to a change in their PL properties. Particularly, near plasmon nanoparticles (open nanocavities) the local field may be enhanced by the localized plasmons, which will lead to an increase of the TPA efficiency. Alternatively, placing QDs in a photonic crystal may boost an increase of their PL quantum yield due to the Purcell effect and also increase their PL intensity at the photonic mode wavelength due to the redistribution of the density of photonic states. In this study, we have fabricated thin-film hybrid materials based on QDs placed near plasmonic nanoparticles or in the photonic crystal. We have demonstrated a 4.3-fold increase of the radiative recombination rate of QDs in the photonic crystal cavity under the two-photon excitation, resulting in the increase of the PL quantum yield. In turn, the coating of the QDs films with the gold nanorods led to the 12-fold increase in TPA at the maximum of the plasmon spectrum. Our results pave the way to a strong increase of the PL efficiency of the QDs under two-photon excitation for their applications in biosensing and nonlinear optoelectronics.
- ПубликацияТолько метаданныеConjugates of ultrasmall quantum dots and acridine derivatives as prospective nanoprobes for intracellular investigations(2021) Laronze-Cochard, M.; Sapi, J.; Karaulov, A.; Linkov, P.; Samokhvalov, P.; Baryshnikova, M.; Nabiev, I.; Самохвалов, Павел Сергеевич; Барышникова, Мария Анатольевна; Набиев, Игорь Руфаилович© 2021 by the authors. Licensee MDPI, Basel, Switzerland.Designing nanoprobes in which quantum dots (QDs) are used as photoluminescent labels is an especially promising line of research due to their possible medical applications ranging from disease diagnosis to drug delivery. In spite of the significant progress made in designing such nanoprobes, the properties of their individual components, i.e., photoluminescent QDs, vectorization moieties, and pharmacological agents, still require further optimization to enhance the efficiency of diagnostic or therapeutic procedures. Here, we have developed a method of engineering compact multifunctional nanoprobes based on functional components with optimized properties: bright photoluminescence of CdSe/ZnS (core/shell) QDs, a compact and effective antitumor agent (an acridine derivative), and direct conjugation of the components via electrostatic interaction, which provides a final hydrodynamic diameter of nanoprobes smaller than 15 nm. Due to the possibility of conjugating various biomolecules with hydroxyl and carboxyl moieties to QDs, the method represents a versatile approach to the biomarker-recognizing molecule imaging of the delivery of the active substance as part of compact nanoprobes.
- ПубликацияОткрытый доступНАБОР ДЛЯ ПРОВЕДЕНИЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ(НИЯУ МИФИ, 2021) Соколов, П. М.; Набиев, И. Р.; Нифонтова, Г. О.; Соколов, Павел Михайлович; Набиев, Игорь Руфаилович; Нифонтова, Галина ОлеговнаИзобретение относится к области медицинских исследований и предназначено для снижения токсичности фотосенсибилизаторов. Раскрыт набор для проведения фотодинамической терапии, включающий активный компонент, состоящий из одной или более микрокапсул, содержащих внутри одну или более молекул гасителя, а также одну или более молекул фотосенсибилизатора, на внешней поверхности микрокапсул и молекулах фотосенсибилизатора иммобилизованы однодоменные антитела, при этом оболочка микрокапсулы выполнена из гибридного светочувствительного материала, который способен разрушаться оптическим излучением, причем спектр излучения, вызывающий активацию фотосенсибилизатора совпадает со спектром излучения, который вызывает разрушение оболочки микрокапсул. Набор также включает вспомогательный компонент, состоящий из одной или более квантовых точек, объединенных с одной или более биологической распознающей молекулой, причем спектр флуоресценции квантовых точек находится в оптическом диапазоне, вызывающем активацию молекул фотосенсибилизатора и разрушение оболочки микрокапсул, при этом биологические распознающие молекулы и однодоменные антитела способны специфически связывать различные эпитопы онкомаркеров, экспрессируемых на поверхности опухолевых клеток, разрушение которых необходимо произвести. Изобретение обеспечивает снижение теневой токсичности фотосенсибилизаторов и специфическую доставку к опухолевым клеткам, что позволяет достигнуть высокой эффективности и безопасности терапии. 6 з.п. ф-лы, 1 пр., 1 ил.
- ПубликацияТолько метаданныеStrong light-matter coupling for optical switching through the fluorescence and FRET control(2021) Nabiev, I.; Набиев, Игорь Руфаилович© 2021 Institute of Physics Publishing. All rights reserved.Resonant interaction between excitonic transitions of molecules and localized electromagnetic field forms the hybrid polaritonic states. Tuneable microresonators may change the light-matter coupling strength and modulate them from weak to strong and ultra-strong coupling regimes. In this work we have realised strong coupling between the tuneable open-access cavity mode and the excitonic transitions in oligonucleotide-based molecular beacons with their terminus labelled with a pair of organic dye molecules demonstrating an efficient donor-to-acceptor Förster resonance energy transfer (FRET). We show that the predominant strong coupling of the cavity photon to the exciton transition in the donor dye molecule can lead to such a large an energy shift that the energy transfer from the acceptor exciton reservoir to the mainly donor lower polaritonic state can be achieved, thus yielding the chromophores' donor-acceptor role reversal or “carnival effect”. The data show the possibility for confined electromagnetic fields to control and mediate polariton-assisted remote energy transfer. Obtained results open the avenues to quantum optical switching and other applications.