Персона: Набиев, Игорь Руфаилович
Загружается...
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Руководитель научной группы "НАНО-ФОТОН"
Фамилия
Набиев
Имя
Игорь Руфаилович
Имя
28 results
Результаты поиска
Теперь показываю 1 - 10 из 28
- ПубликацияОткрытый доступВзаимодействие белков сыворотки и плазмы крови человека с полиэлектролитными микрокапсулами различной структуры(2024) Герасимович, Е. С.; Нифонтова, Г. О.; Крюкова, И. С.; Набиев, И.; Суханова, А.; Герасимович, Евгения Семёновна; Крюкова, Ирина Сергеевна; Набиев, Игорь РуфаиловичИсследование особенностей взаимодействия систем для адресной доставки лекарств с компонентами биологических жидкостей человека является одним из актуальных направлений в области разработки персонализированных стратегий терапии различных заболеваний человека. Инкапсуляция лекарственных средств в микроносители обеспечивает интактность лекарственных средств и их пролонгированное высвобождение в органе-мишени. Структура и свойства поверхности микроносителей определяют их общую биосовместимость и особенности их взаимодействий с биомолекулами. В представленной работе были получены микрочастицы структуры ядро/полиэлектролитная оболочка и полиэлектролитные микрокапсулы (микрочастицы с растворённым ядром), отличающиеся друг от друга степенью жесткости своей структуры, и проведен анализ их взаимодействий с белками сыворотки и плазмы крови человека. Полученные результаты показали наличие выраженных отличий в профиле белков, связывающихся с поверхностью полиэлектролитных микрочастиц и микрокапсул с различной степенью жесткости.
- ПубликацияОткрытый доступМногослойные полимерные капсулы для адресной доставки противоопухолевых соединений(2024) Калениченко, Д. В.; Нифонтова, Г. О.; Крюкова, И. С.; Суханова, А.; Набиев, И.; Набиев, Игорь Руфаилович; Крюкова, Ирина Сергеевна; Калениченко, Дарья ВладимировнаРазработка систем контролируемой адресной доставки препаратов для персонализированной терапии рака является одной из важнейших задач современной медицины. Контролируемые доставка и высвобождение противоопухолевых препаратов обеспечивают снижение их токсичности для нормальных клеток организма человека и уменьшают побочные эффекты терапии рака. Многослойные полимерные капсулы (МПК) являются перспективными потенциальными кандидатами для разработки систем доставки на их основе. МПК получают с помощью послойной адсорбции противоположно заряженных полиэлектролитов на поверхности заряженного микросубстрата сферической формы. Данный метод позволяет получать МПК различной структуры, функционализировать их противоопухолевыми агентами и направляющими биомолекулами для их адресной доставки к опухоли. В представленной работе описаны основные этапы получения МПК, а также проанализированы факторы, влияющие на эффективность загрузки в МПК противоопухолевого препарата доксорубицина с помощью метода пассивной диффузии.
- ПубликацияОткрытый доступФЛУОРЕСЦЕНТНЫЙ ГИДРОГЕЛЬ ДЛЯ ДЕТЕКЦИИ БИОЛОГИЧЕСКИХ МОЛЕКУЛ(2024) Соколов, П. М.; Герасимович, Е. С.; Самохвалов, П. С.; Набиев, И. Р.; Набиев, Игорь Руфаилович; Самохвалов, Павел Сергеевич; Соколов, Павел Михайлович; Герасимович, Евгения СемёновнаИзобретение относится к области создания гибридных наноматериалов, предназначенных для детектирования органических и неорганических молекул, в частности, для создания флуоресцентных гидрогелей из флуоресцентных нанокристаллов и биологических распознающих молекул в ходе фазового перехода золь-гель. Флуоресцентный гидрогель для детекции биологических молекул состоит из флуоресцентных неорганических низкотоксичных нанокристаллов структуры ядро/оболочка, поверхность которых содержит тиол-содержащие лиганды, способные к гелебразованию за счет фазового перехода золь-гель, а также содержит лиганды, с которыми конъюгированы однодоменные антитела, которые специфически связывают исследуемый аналит, конъюгированные пространственно-ориентированным образом так, чтобы их антигенсвязывающие участки были ориентированы во вне от поверхности нанокристаллов. Техническим результатом является создание флуоресцентного гидрогеля для детекции биологических молекул, обеспечивающего равномерное распределение флуоресцентных неорганических низкотоксичных нанокристаллов структуры ядро/оболочка и биологических распознающих молекул на базе однодоменных антител, что позволяет повысить чувствительность детекции аналитов и использовать его в составе биосенсоров биологических молекул. 3 з.п. ф-лы, 1 ил.
- ПубликацияОткрытый доступГибридные системы на основе фотонных кристаллов из пористого кремния, жидких кристаллов и квантовых точек(2024) Крюкова, И. С.; Бобровский, А. Ю.; Мартынов, И. Л.; Самохвалов, П. С.; Набиев, И. Р.; Набиев, Игорь Руфаилович; Самохвалов, Павел Сергеевич; Мартынов, Игорь Леонидович; Крюкова, Ирина СергеевнаФотонные кристаллы из пористого кремния (ПК) представляют большой интерес для фундаментальных и прикладных исследований. Внедрение люминофоров в эти структуры позволяет управлять их излучательными свойствами, что перспективно для использования в лазерах и дисплеях, а также для исследований взаимодействия света с веществом. В то же время разработка фотонных кристаллов, в которых спектральное положение фотонной запрещенной зоны может быть сдвинуто внешними воздействиями, открывает перспективы для создания новых фотонных и оптоэлектронных материалов. В настоящей работе предложена технология изготовления гибридных систем на основе квантовых точек (КТ) и фотохромной нематической жидкокристаллической (ЖК) смеси, внедренных в микрорезонаторы (МР) из ПК. При внедрении в МР, спектр фотолюминесценции (ФЛ) КТ сужается, что обусловлено эффектом Парселла и слабой связью экситонных переходов в КТ с собственной модой МР из ПК. При воздействии УФ-излучения наблюдается длинноволновый сдвиг спектра ФЛ гибридной структуры, а также обратный сдвиг спектра при облучении видимым светом. Продемонстрированный фотооптический отклик может быть использован для управления ФЛ свойствами гибридных систем и создания на их основе новых фотонных, оптоэлектронных и сенсорных устройств.
- ПубликацияОткрытый доступGraphene quantum dots unraveling: Green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity(2019) de, Menezes, F. D.; dos, Reis, S. R. R.; Pinto, S. R.; Portilho, F. L.; Sukhanova, A.; Nabiev, I. R.; Суханова, Алена Владимировна; Набиев, Игорь Руфаилович© 2019 Graphene is one of the crystalline forms of carbon, along with diamond, graphite, carbon nanotubes, and fullerenes, and is considered as a revolutionary and innovating product. The use of a graphene-based nanolabels is one of the latest and most prominent application of graphene, especially in the field of diagnosis and, recently, in loco radiotherapy when coupled with radioisotopes. However, its biological behavior and mutagenicity in different cell or animal models, as well as the in vivo functional activities, are still unrevealed. In this study we have developed by a green route of synthesizing graphene quantum dots (GQDs)and characterized them. We have also developed a methodology for direct radiolabeling of GQDs with radioisotopes.Finally; we have evaluated in vivo biological behavior of GQDs using two different mice models and tested in vitro mutagenicity of GQDs. The results have shown that GQDs were formed with a size range of 160-280 nm, which was confirmed by DRX and Raman spectroscopy analysis, corroborating that the green synthesis is an alternative, environmentally friendly way to produce graphene. The radiolabeling test has shown that stable radiolabeled GQDs can be produced with a high yield (>90%). The in vivo test has demonstrated a ubiquitous behavior when administered to healthy animals, with a high uptake by liver (>26%)and small intestine (>25%). Otherwise, in an inflammation/VEGF hyperexpression animal model (endometriosis), a very peculiar behavior of GQDs was observed, with a high uptake by kidneys (over 85%). The mutagenicity test has demonstrated A:T to G:C substitutions suggesting that GQDs exhibits mutagenic activity.
- ПубликацияТолько метаданныеEnergy transfer mechanisms in nanobiohybrid structures based on quantum dots and photosensitive membrane proteins(2016) Sizova, S. V.; Oleinikov, V. A.; Bouchonville, N.; Molinari, M.; Samokhvalov, P. S.; Sukhanova, A.; Nabiev, I.; Суханова, Алена Владимировна; Набиев, Игорь Руфаилович; Олейников, Владимир АлександровичThe integration of novel nanomaterials with highly functional biological molecules has numerous advanced applications, including optoelectronics, biosensing, imaging, and energy harvesting. This review summarizes recent progress in understanding the mechanisms of energy transfer between semiconductor nanocrystal (so-called quantum dots [QDs]) and photosensitive proteins in heterostructures, such as hybrids of semiconductor nanocrystals with purple membranes containing bacteriorhodopsin (bR) or with photosynthetic reaction centers (RCs). Understanding of these mechanisms should enable prediction of the possible ways to improve the biological function of biomolecules by means of their assembling with QDs and develop novel functional materials with controlled photonic properties and applications. The possible mechanisms of energy transfer from QDs to photochromic biomolecules are discussed and correlated with experimental data. The principles of hybrid structures engineering, donor/acceptor parameters affecting both energy transfer efficiency and biological function, and functionality of these hybrid structures are described. New nanobiohybrid materials are shown to have advanced implications for optoelectronics, photonics, and photovoltaics due to the ability of nanocomponents of these materials for efficient energy harvesting, conversion, and transfer of additional energy to Biosystems, thus making them working more efficiently.
- ПубликацияТолько метаданныеPolariton-assisted splitting of broadband emission spectra of strongly coupled organic dye excitons in tunable optical microcavity(2019) Mochalov, Konstantin; Dovzhenko, Dmitriy; Vaskan, Ivan; Kryukova, Irina; Rakovich, Yury; Nabiev, Igor; Крюкова, Ирина Сергеевна; Набиев, Игорь РуфаиловичResonance interaction between a localized electromagnetic field and excited states in molecules paves the way to control fundamental properties of a matter. In this study, we encapsulated organic molecules with relatively low unoriented dipole moments in the polymer matrix, placed them in tunable optical microcavity and realized, for the first time, controllable modification of the broad photoluminescence (PL) emission of these molecules in strong coupling regime at room temperature. Notably, while in most previous studies it was reported that the single mode dominates in the PL signal (radiation of the so-called branch of the lower polariton), here we report on the observation of two distinct PL peaks, evolution of which has been followed as the microcavity mode is detuned from the excitonic resonance. A significant Rabi splitting estimated from the modified PL spectra was as large as 225 meV. The developed approach can be used both in fundamental research of resonant light-mater coupling and its practical applications in sensing and development of coherent spontaneous emission sources using a combination of carefully designed microcavity with a wide variety of organic molecules. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
- ПубликацияОткрытый доступBioimaging Tools Based on Polyelectrolyte Microcapsules Encoded with Fluorescent Semiconductor Nanoparticles: Design and Characterization of the Fluorescent Properties(2019) Efimov, A.; Agapova, O.; Agapov, I.; Nifontova, G.; Nabiev, I. R.; Sukhanova, A.; Нифонтова, Галина Олеговна; Набиев, Игорь Руфаилович; Суханова, Алена Владимировна© 2019, The Author(s). Fluorescent imaging is a widely used technique for detecting and monitoring the distribution, interaction, and transformation processes at molecular, cellular, and tissue level in modern diagnostic and other biomedical applications. Unique photophysical properties of fluorescent semiconductor nanocrystals “quantum dots” (QDs) make them advanced fluorophores for fluorescent labeling of biomolecules or optical encoding of microparticles to be used as bioimaging and theranostic agents in targeted delivery, visualization, diagnostics, and imaging. This paper reports on the results of development of an improved approach to the optical encoding of polyelectrolyte microcapsules with stable, covered with the multifunctional polyethyleneglycol derivatives water-soluble QDs, as well as characterization of the optical properties, morphological and structural properties of the encoded microcapsules. The embedding of QDs into the polymer microcapsule membrane through layer-by-layer deposition on a preliminarily formed polymeric polyelectrolyte shell makes it possible to obtain bright fluorescent particles with an adapted charge and size distribution that are distinctly discernible by flow cytometry as individual homogeneous populations. The fluorescent microcapsules developed can be used in further designing bioimaging and theranostic agents sensitive to various external stimuli along with photoexcitation.
- ПубликацияОткрытый доступDouble Rabi Splitting in a Strongly Coupled System of Core-Shell Au@Ag Nanorods and J-Aggregates of Multiple Fluorophores(2019) Melnikau, D.; Govyadinov, A. A.; Sanchez-Iglesias, A.; Grzelczak, M.; Nabiev, I. R.; Liz-Marzan, L. M.; Rakovich, Y. P.; Набиев, Игорь РуфаиловичCopyright © 2019 American Chemical Society.The interaction of several components in the strong coupling regime yielding multiple Rabi splittings opens up remarkable possibilities for studies of multimode hybridization and energy transfer, which is of considerable interest in both fundamental and applied science. Here we demonstrate that three different components, such as core-shell Au@Ag nanorods and J-aggregates of two different dyes, can be integrated into a single hybrid structure, which leads to strong collective exciton-plasmon coupling and double-mode Rabi splitting totaling 338 meV. We demonstrate strong coupling in these multicomponent plexitonic nanostructures by means of magnetic circular dichroism spectroscopy and demonstrate strong magneto-optical activity for the three hybridized states resulting from this coupling. The J-aggregates of two different nonmagnetic dyes interact with metal nanoparticles effectively, achieving magnetic properties due to the hybridization of electronic excitations in the three-component system. ©
- ПубликацияТолько метаданныеGraphene - quantum dot hybrid nanostructures with controlled optical and photoelectric properties for solar cell applications(2019) Litvin, Alexander P.; Baranov, Alexander V.; Fedorov, Anatoly V.; Sokolov, Pavel M.; Zvaigzne, Maria A.; Krivenkov, Victor A.; Samokhvalov, Pavel S.; Nabiev, Igor R.; Соколов, Павел Михайлович; Самохвалов, Павел Сергеевич; Набиев, Игорь РуфаиловичState-of-the-art research related to increasing the efficiency and reducing the cost of solar energy converters is analyzed. An approach to solving these issues is to introduce graphene and its derivatives into the photoactive layer of solar cells. These materials have record high charge carrier mobility at normal temperatures and low absorption cross-sections of solar radiation. The review considers chemical materials science methods and nanotechnology approaches to the design of 2D hybrid structures based on graphene and quantum dots. Examples of their most successful use in solar cells are given and promising areas of research and development in this field are formulated.
- «
- 1 (current)
- 2
- 3
- »