Персона: Попов, Антон Александрович
Загружается...
Email Address
Birth Date
Научные группы
Научная группа
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Попов
Имя
Антон Александрович
Имя
4 results
Результаты поиска
Теперь показываю 1 - 4 из 4
- ПубликацияОткрытый доступСоздание композитов Bi@SiO2 со структурой ядро@оболочка на основе лазерно-синтезированных наночастиц Bi(2023) Скрибицкая, А. В.; Короткова, Н. А.; Котельникова, П. А.; Тихоновский, Г. В.; Попов, А. А.; Климентов, С. М.; Завестовская, И. Н.; Кабашин, А. В.; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович; Климентов, Сергей Михайлович; Попов, Антон Александрович; Скрибицкая, Ангелина Вячеславовна; Тихоновский, Глеб ВалерьевичРазработана методика получения нанокомпозитов по типу ядро@оболочка путём поверхностной модификации лазерно-синтезированных наночастиц (НЧ) висмута тетраэтоксисиланом с конечной структурной формулой Bi@SiO2. Показано, что покрытие НЧ Bi оболочкой из SiO2 приводит к образованию сферических наноформуляций с модой размерного распределения 250 – 300 нм. Разработанная методика, позволяющая создавать биосовместимые нанокомпозиты на основе Bi для сенсибилизации мультимодальной тераностики, является новой перспективной альтернативой традиционным методам.
- ПубликацияТолько метаданныеIn vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles(2019) Bailly, A. -L.; Correard, F.; Tselikov, G.; Chaspoul, F.; Popov, A.; Kabashin, A. V.; Попов, Антон Александрович; Кабашин, Андрей ВикторовичCapable of generating plasmonic and other effects, gold nanostructures can offer a variety of diagnostic and therapy functionalities for biomedical applications, but conventional chemically-synthesized Au nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au nanoparticles (AuNP) present a viable alternative to chemical counterparts and can offer exceptional purity (no trace of contaminants) and unusual surface chemistry making possible direct conjugation with biocompatible polymers (dextran, polyethylene glycol). This work presents the first pharmacokinetics, biodistribution and safety study of laser-ablated dextran-coated AuNP (AuNPd) under intravenous administration in small animal model. Our data show that AuNPd are rapidly eliminated from the blood circulation and accumulated preferentially in liver and spleen, without inducing liver or kidney toxicity, as confirmed by the plasmatic ALAT and ASAT activities, and creatininemia values. Despite certain residual accumulation in tissues, we did not detect any sign of histological damage or inflammation in tissues, while IL-6 level confirmed the absence of any chronic inflammation. The safety of AuNPd was confirmed by healthy behavior of animals and the absence of acute and chronic toxicities in liver, spleen and kidneys. Our results demonstrate that laser-synthesized AuNP are safe for biological systems, which promises their successful biomedical applications.
- ПубликацияТолько метаданныеFemtosecond laser-ablative synthesis of plasmonic Au and TiN nanoparticles for biomedical applications(2019) Tselikov, G.; Al-Kattan, A.; Popov, A. A.; Kabashin, A. V.; Попов, Антон Александрович; Кабашин, Андрей ВикторовичCopyright © 2019 SPIE.Methods of femtosecond laser ablation and fragmentation in liquids were used to fabricate bare (ligand-free) plasmonic Au and TiN nanoparticles. By varying laser parameters (laser energy, focusing conditions) and environment (deionized water, acetone), we were able to synthesize spherical Au and TiN nanoparticles of variable size between a few of nm and 30-40 nm under a relatively low size dispersion. EDX and XPS tests confirm that both nanoparticle samples consist of gold and titanium nitride in the absence of any impurity. While Au based nanoparticles demonstrate a standard plasmonic extinction peak in the visible green range (520-540 nm), TiN counterparts exhibit a broad red-shifted peak centered around 650-700 nm even for very small nanoparticle sizes (4-5 nm). We finally discuss possible applications of laser-synthesized Au nanoparticles in SERS, SEIRA and electrocatalysis, while TiN nanoparticles are considered as promising sensitizers of photothermal therapies.
- ПубликацияОткрытый доступСПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ КОЛЛОИДНЫХ НАНОРАЗМЕРНЫХ ЧАСТИЦ ЗОЛОТА МЕТОДОМ ИМПУЛЬСНОЙ ЛАЗЕРНОЙ АБЛЯЦИИ(НИЯУ МИФИ, 2024) Шахов, П. В.; Тихоновский, Г. В.; Савинов, М. С.; Попов, А. А.; Климентов, С. М.; Гармаш, А. А.; Попов, Антон Александрович; Шахов, Павел Владимирович; Савинов, Максим Сергеевич; Тихоновский, Глеб ВалерьевичИзобретение относится к способу получения наноматериалов методом импульсной лазерной абляции в жидкости. Раскрыт способ получения сферических коллоидных наноразмерных частиц золота методом импульсной лазерной абляции, заключающийся в том, что производят облучение лазерными импульсами поверхности золотой мишени, погруженной в жидкость, где облучение лазерными импульсами производят с длиной волны в пределах от 750 до 1100 нм, энергией в импульсе от 5 до 150 мкДж, частотой повторения импульсов от 100 Гц до 100 МГц, длительностью импульса от 10 фс до 10 пс, длительностью воздействия не менее 1 мин, при этом в качестве жидкости используется деионизованная вода или деионизованная вода с молярной концентрацией хлорида натрия менее 10 ммоль/л до момента получения коллоидного раствора, после чего производится центрифугирование раствора с ускорением от 10000 до 20000 g не более 1,5 мин, после чего забирают не более 90% надосадочной жидкости. Изобретение обеспечивает возможность получения сферических коллоидных наноразмерных частиц золота с высокой производительностью синтеза, обладающих высокой коллоидной стабильностью и мономодальным характером размерного распределения в диапазоне от 2 до 150 нм. 2 пр.