Персона:
Леонова, Наталия Михайловна

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт общей профессиональной подготовки (ИОПП)
Миссией Института является: фундаментальная базовая подготовка студентов, необходимая для получения качественного образования на уровне требований международных стандартов; удовлетворение потребностей обучающихся в интеллектуальном, культурном, нравственном развитии и приобретении ими профессиональных знаний; формирование у студентов мотивации и умения учиться; профессиональная ориентация школьников и студентов в избранной области знаний, формирование способностей и навыков профессионального самоопределения и профессионального саморазвития. Основными целями и задачами Института являются: обеспечение высококачественной (фундаментальной) базовой подготовки студентов бакалавриата и специалитета; поддержка и развитие у студентов стремления к осознанному продолжению обучения в институтах (САЕ и др.) и на факультетах Университета; обеспечение преемственности образовательных программ общего среднего и высшего образования; обеспечение высокого качества довузовской подготовки учащихся Предуниверситария и школ-партнеров НИЯУ МИФИ за счет интеграции основного и дополнительного образования; учебно-методическое руководство общеобразовательными кафедрами Института, осуществляющими подготовку бакалавров и специалистов по социо-гуманитарным, общепрофессиональным и естественнонаучным дисциплинам, обеспечение единства требований к базовой подготовке студентов в рамках крупных научно-образовательных направлений (областей знаний).
Статус
Фамилия
Леонова
Имя
Наталия Михайловна
Имя

Результаты поиска

Теперь показываю 1 - 7 из 7
  • Публикация
    Открытый доступ
    Methods for identifying an information object in social networks
    (2021) Cherkasskaya, M.; Cherkasskiy, A.; Artamonov, A.; Leonova, N.; Черкасский, Андрей Игоревич; Артамонов, Алексей Анатольевич; Леонова, Наталия Михайловна
    © 2020 Elsevier B.V.. All rights reserved.Social networks are a unique phenomenon in which a large amount of unstructured information about various users is collected. The collected data can be used to identify different groups of users for the purpose of delivering targeted information to them. The article discusses the issues of building models of thematic groups of users based on multi-criteria assessment and using agent technologies of information collection and processing. The implementation of this method expands the possibilities of social research and the formation of thematic user groups for monitoring and analyzing situations in various areas of human activity. The proposed concept has shown its effectiveness on the training and control sample of objects, which makes it possible to predict the effectiveness of the use of agent technologies for scanning information resources of social media.
  • Публикация
    Только метаданные
    Intelligent Processing of Speech Information in the Tasks of Noise Reduction for Communication Tools at the Objects of the Digital Economy
    (2020) Alyushin, A. M.; Leonova, N. M.; Modyaev, A. D.; Алюшин, Александр Михайлович; Леонова, Наталия Михайловна; Модяев, Алексей Дмитриевич
    © 2020 IEEE.The relevance of the development of methodological and technical means of noise cleaning of acoustic signals is substantiated. The analysis of noise reduction software used in practice is given, their main disadvantages are revealed. The paper considers an approach based on intelligent digital processing of a noisy acoustic signal with unknown parameters of noise and interference. The approach implements a technique for recognizing noise and interference parameters when processing two-dimensional images obtained by transforming a noisy acoustic signal into dynamic sonograms. This allows you to recognize and classify various types of interference, as well as their parameters based on the use of special tools for processing graphic information. The technology of automatic analysis of noisy acoustic information in the framework of the proposed approach is considered.
  • Публикация
    Только метаданные
    THE ANALYSIS of the EDUCATIONAL MEASUREMENT RESULTS, and ITS PROVIDING AS "SOFTWARE-AS-A-SERVICE" SOLUTION in ELEARNING
    (2021) Lavdina, Y.; Gustun, O.; Budaragin, N.; Leonova, N.; Modyaev, A.; Лавдина, Юлия Константиновна; Густун, Олег Николаевич; Бударагин, Николай Владимирович; Леонова, Наталия Михайловна; Модяев, Алексей Дмитриевич
    Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).In modern eLearning systems, educational measurements are used both to evaluate the students' achievements and to control the learning process. However, eLearning systems usually have comparatively trivial embedded features for analyzing measurement results, which are not of considerable interest for sufficient statistical research of the assessment tools quality. To identify the characteristics of assessment materials such as reliability, homogeneity, discriminatory power, validity, and others, researchers are forced to get dump from the database of eLearning system. And then they use third-party software to perform required data processing operations and calculations. This makes it difficult to analyze the measurement results during the measuring itself, for example, in adaptive testing. We propose the approach to organizing and performing measurement results analysis by using the software-as-a-service (SaaS) model for cloud computing. The SaaS user is provided with the set of necessary tools for conducting full-fledged statistical analysis in real time. They also get the access to customizable applications for implementing their own measurement procedures (including adaptive ones).
  • Публикация
    Только метаданные
    Model of Passive Endure Echolocation
    (2022) Afonichkina, P. Y.; Silnov, D. S.; Leonova, N. M.; Modyaev, A. D.; Сильнов, Дмитрий Сергеевич; Леонова, Наталия Михайловна; Модяев, Алексей Дмитриевич
    © 2022 IEEE.In the course of work, a study was carried out to identify patterns in the signal changes of low-frequency antennas and to identify the dependence on the type and material of obstacles, in particular buildings and domestic premises. the main task was to find the signal source in the premises of different layouts. The developed system is designed to determine the key points for the triangulation of Wi-Fi signal sources in urban areas. The main functions are searching for quality zones with the lowest errors on the resulting data, defining the values obtained in the course of the algorithm for easy comparison with the real installation. Visualization of a given room plan with marked key points.
  • Публикация
    Только метаданные
    Antenna for Passive Echolocation
    (2022) Afonichkina, P. Y.; Silnov, D. S.; Leonova, N. M.; Modyaev, A. D.; Сильнов, Дмитрий Сергеевич; Леонова, Наталия Михайловна; Модяев, Алексей Дмитриевич
    © 2022 IEEE.The article describes the process of simulation of the narrow-directional antenna in MMANA-GAL program. Based on the construction of the theoretical, experimental models the main factors influencing the width of the petals are revealed. Calculated calculation formulas, allowing the calculation of the resistance and the size of obstacles that adjust the acceptance and transmission of the antenna signal. The diagrams of the orientation for different frequencies. Tapering the main lobe of the antenna allows signals to be read at a specific predetermined angle, reducing error and the number of spurious signals.
  • Публикация
    Только метаданные
    Algorithm Allows Changing the Required Voice to a Predetermined One Using a Surrogate Voice
    (2022) Afonichkina, P. Y.; Silnov, D. S.; Leonova, N. M.; Modyaev, A. D.; Сильнов, Дмитрий Сергеевич; Леонова, Наталия Михайловна; Модяев, Алексей Дмитриевич
    © 2022 IEEE.This article describes the algorithm for changing the input voice to a predefined voice. The main principle and new principle of the algorithm is the creation of a surrogate voice, the use of which will significantly reduce the time spent on the operation of the algorithm. The work consists of 3 main stages: training the neural network model according to the given parameters of the initial voice; calculation of filters that affect the characteristics of speech: tempo, speed, intonation, defects, as well as musical characteristics; applying the received filters to the input - variable voice.