Персона:
Савельева, Татьяна Александровна

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Савельева
Имя
Татьяна Александровна
Имя

Результаты поиска

Теперь показываю 1 - 3 из 3
  • Публикация
    Открытый доступ
    Combined video analysis of ICG and 5-ALA induced protoporphyrin IX and hemoglobin oxygen saturation in near infrared
    (2019) Kustov, D. M.; Makarov, V. I.; Osipova, E. E.; Savelieva, T. A.; Grachev, P. V.; Loschenov, V. B.; Савельева, Татьяна Александровна; Лощенов, Виктор Борисович
    © 2019 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved Due to the high recurrence rate after the glial brain tumor removal, methods of intraoperative navigation have a high relevance, providing the most complete removal of tumor tissues with maximum preservation of healthy ones. In this work a combined visualization method is proposed with an assessment of fluorescence and diffuse reflectance images. Fluorescence intensity of 5-ALA-induced protoporphyrin IX allows visualization of tumor cells, distribution of indocyanine green fluorescence helps to visualize the vascular system of the tumor, and parallel mapping of the degree of oxygenation demonstrate the hypoxic regions. The images were obtained in the near infrared range of the optical spectrum in order to maximize the optical probing depth in the window of biological transparency.
  • Публикация
    Открытый доступ
    Optical spectroanalyzer with extended dynamic range for pharmacokinetic investigations of photosensitizers in biotissue Оптическии спектроанализатор с расширенным динамическим диапазоном для фармакокинетических исследовании флуоресцирующих препаратов в биотканях
    (2019) Linkov, K. G.; Meerovich, G. A.; Akhlyustina, E. V.; Savelieva, T. A.; Loschenov, V. B.; Меерович, Геннадий Александрович; Ахлюстина, Екатерина Витальевна; Савельева, Татьяна Александровна; Лощенов, Виктор Борисович
    © 2019 Russian Photodynamic Association. All Rights Reserved. Currently, the most promising method for the study of pharmacokinetics of drugs with fluorescent properties is the spectral-fluorescent method. In this article, we propose an algorithm for expanding the dynamic range of the spectrum analyzer by automatically monitoring the maximum spectral density in the recorded fluorescence spectrum and automatically controlled changes in the accumulation time depending on this value, followed by compensation of the output signal with regard to this change, as well as hardware circuit solutions that allow this algorithm. Testing of LESA-01-"Biospeс" spectrum analyzer, upgraded using the proposed approach, was carried out on photosensitizer dispersions based on tetra-3-phenylthiophthalocyanine hydroxyaluminium of various concentrations (from 0.01 mg/l to 50 mg/l), approximately corresponding to the concentrations realized in the process of studying pharmacokinetics in calibration samples and tissues of experimental animals. The proposed solutions that implement the algorithm for recording fluorescence spectra with automatic change of accumulation time depending on the signal level, ensured a significant expansion of the dynamic range of the spectrum analyzer (up to 3.5 orders of magnitude) and improved accuracy in pharmacokinetic studies.
  • Публикация
    Открытый доступ
    The role of 5-ALA in low-grade gliomas and the influence of antiepileptic drugs on intraoperative fluorescence
    (2019) Goryaynov, S. A.; Widhalm, G.; Goldberg, M. F.; Chelushkin, D.; Savelieva, T.; Савельева, Татьяна Александровна
    © 2019 Goryaynov, Widhalm, Goldberg, Chelushkin, Spallone, Chernyshov, Ryzhova, Pavlova, Revischin, Shishkina, Jukov, Savelieva, Victor and Potapov.Objectives: Intraoperative tumor visualization with 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is widely applied for improved resection of high-grade gliomas. However, visible fluorescence is present only in a minority of low-grade gliomas (LGGs) according to current literature. Nowadays, antiepileptic drugs (AEDs) are frequently administered to LGG patients prior to surgery. A recent in-vitro study demonstrated that AEDs result in significant reduction of PpIX synthesis in glioma cells. The aim of this study was thus to investigate the role of 5-ALA fluorescence in LGG surgery and the influence of AEDs on visible fluorescence. Patients and Methods: Patients with resection of a newly diagnosed suspected LGG after 5-ALA (25 mg/kg) administration were initially included. During surgery, the presence of visible fluorescence (none, mild, moderate, or bright) within the tumor and intratumoral fluorescence homogeneity (diffuse or focal) were analyzed. Tissue samples from fluorescing and/or non-fluorescing areas within the tumor and/or the assumed tumor border were collected for histopathological analysis (WHO tumor diagnosis, cell density, and proliferation rate). Only patients with diagnosis of LGG after surgery remained in the final study cohort. In each patient, the potential preoperative intake of AEDs was investigated. Results: Altogether, 27 patients with a histopathologically confirmed LGG (14 diffuse astrocytomas, 6 oligodendrogliomas, 4 pilocytic astrocytomas, 2 gemistocytic astrocytomas, and one desmoplastic infantile ganglioglioma) were finally included. Visible fluorescence was detected in 14 (52%) of 27. In terms of fluorescence homogeneity (n = 14), 7 tumors showed diffuse fluorescence, while in 7 gliomas focal fluorescence was noted. Cell density (p = 0.03) and proliferation rate (p = 0.04) was significantly higher in fluorescence-positive than in fluorescence-negative samples. Furthermore, 15 (56%) of 27 patients were taking AEDs before surgery. Of these, 11 patients (73%) showed no visible fluorescence. In contrast, 10 (83%) of 12 patients without prior AEDs intake showed visible fluorescence. Thus, visible fluorescence was significantly more common in patients without AEDs compared to patients with preoperative AED intake (OR = 0,15 (CI 95% 0.012-1.07), p = 0.046). Conclusions: Our study shows a markedly higher rate of visible fluorescence in a series of LGGs compared to current literature. According to our preliminary data, preoperative intake of AEDs seems to reduce the presence of visible fluorescence in such tumors and should thus be taken into account in the clinical setting.