Персона: Артамонов, Алексей Анатольевич
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт международных отношений
Цель ИМО и стратегия развития - системная подготовка высококвалифицированных кадров, способных решать нестандартные задачи при реализации международных научно-технологических и торгово-промышленных проектов для компаний и корпораций ключевых секторов экономики страны.
Статус
Фамилия
Артамонов
Имя
Алексей Анатольевич
Имя
33 results
Результаты поиска
Теперь показываю 1 - 10 из 33
- ПубликацияОткрытый доступПРОГРАММА АВТОМАТИЗИРОВАННОГО ВЫДЕЛЕНИЯ ЗНАЧЕНИЙ И ЕДИНИЦ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН ИЗ ПОЛНОТЕКСТОВЫХ МАТЕРИАЛОВ(НИЯУ МИФИ, 2024) Хвостова, М. О.; Тукумбетова, Р. Р.; Соколов, И. Д.; Тремасов, Г. M.; Антонов, Е. В.; Артамонов, А. А.; Матвеева, А. Р.; Андреев, М. Н.; Матвеева, Анастасия Руслановна; Артамонов, Алексей Анатольевич; Антонов, Евгений Вячеславович; Тремасов, Григорий Михайлович; Хвостова, Мария Олеговна; Тукумбетова, Руфина Рашитовна; Соколов, Иван ДмитриевичПрограмма выделяет значения и единицы измерения физической величины из текста научных публикаций с возможностью унификации и конвертации значений в международную систему единиц (СИ). Конвертация физической величины в СИ сопровождается обращениями к составленной авторами базе знаний единиц измерений и приставок. Пользователем с помощью программного интерфейса передается текст научной публикации, результат работы программы - набор обнаруженных значений и единиц измерения физических величин в структурированном виде. Тип ЭВМ: IBM PC-совместимый компьютер; ОС: Ubuntu 20.04 и выше.
- ПубликацияТолько метаданныеMethodology of Analysis of Similar Objects with the Use of Modern Visualization Tools(2020) Tretyakov, E. S.; Tukumbetova, R. R.; Artamonov, A. A.; Тукумбетова, Руфина Рашитовна; Артамонов, Алексей Анатольевич© 2020, Springer Nature Switzerland AG.Nowadays during data collection and primary data analysis the problem related to express analysis of received amount of information occurs. Therefore, this article presents methods of analysis of similar objects with the use of scientific visualization tools. These methods are considered with the analysis of Chinese published military patents, which were declassified due to the transparent policy of civil-military integration. For comprehensive implementation of these tools, first of all, it is necessary to identify attributes, which are specific for all patents were identified. With the use of these attributes, visualization tools and agent technologies, the comprehensive analysis of the patent information was conducted. In the article graph presentation of data is considered as the main visualization tool. The authors provide the examples of using various methods of graphic visualization with different selections of attributes. In addition, in this article the use of graphs for creating the termbase from the patent information is described. Analyze of such graph entirely, because of its size, can give only understanding of the amount of analyzed data. With graph fragmentation there is an opportunity to select general and unique terms for all IPC groups. Therefore it provides the analyst the opportunity to receive an overview of information in the patents instantly.
- ПубликацияТолько метаданныеInformation Analysis Support for Decision-Making in Scientific and Technological Development(2020) Onykiy, B.; Antonov, E.; Artamonov, A.; Tretyakov, E.; Артамонов, Алексей АнатольевичThis paper presents the development of an information and analytical system to foster scientific and technological development in a given scientific field. In this work, the main software tools for implementing distributed computing, which involves a set of software components for collecting, processing, and analyzing large amounts of data, are considered. In addition, various approaches for task coordination between different sets of software are discussed and techniques for storing large amounts of data are described. The system architecture and database schema are designed and tested. Nowadays, the intellectualization of individual software agents is a key aspect of a new generation of multiagent systems. For this reason, this paper develops an approach that can organize activities of a large number of software agents to increase system intellectualization through swarm intelligence at the level of individual agents. Three remote servers were used to build and test the system deployment, comprising such components as a platform for monitoring and scheduling workflow, data storage, and a graphical user interface that enables data retrieval and interaction on the Internet.
- ПубликацияТолько метаданныеGraph visualization of the characteristics of complex objects on the example of the analysis of politicians(2020) Ulizko, M.; Tukumbetova, R.; Antonov, E.; Artamonov, A.; Антонов, Евгений Вячеславович; Артамонов, Алексей Анатольевич© 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).The paper considers the task of analyzing complex interconnected objects using graph construction. There is no unified tool for constructing graphs. Some solutions can build graphs limited by the number of nodes, while others do not visually display data. The Gephi application was used to construct graphs for the research. Gephi has great functionality for building and analyzing graphs. The subject of research is a politician with a certain set of characteristics. In the paper an algorithm that enables to automate data collection on politicians was developed. One of the main methods of data collecting on the Internet is web scraping. Web scraping software may access the World Wide Web directly using the HTTP, or through a web browser. While web scraping can be done manually by a software user, the term typically refers to automated processes implemented using a software agent. The data was necessary for constructing graphs and their analysis. The use of graphs enables to see various types of relationships, including mediate. This methodology enables to change the attitude towards the analysis of multidimensional objects.
- ПубликацияТолько метаданныеVisualization of graph-based representations for analyzing related multidimensional objects(2020) Ulizko, M. S.; Antonov, E. V.; Artamonov, A. A.; Tukumbetova, R. R.; Улизко, Михаил Сергеевич; Антонов, Евгений Вячеславович; Артамонов, Алексей Анатольевич; Тукумбетова, Руфина Рашитовна© 2020 National Research Nuclear University. All rights reserved.The paper considers the task of analyzing complex interconnected objects using graphs. The subject of the research is such multidimensional object as a "politician". The paper presents the main methods of visualizing multidimensional data and the choice of data analysis is justified using graphs. An algorithm that enables to automate data collection on politicians was developed. One of the main methods of data collecting on the Internet is web scraping. Web scraping software may access the World Wide Web directly using the HTTP, or through a web browser. While web scraping can be done manually by a software user, the term typically refers to automated processes implemented using a software agent. The process of transition from an object of the "personality" type to its graph representation with various types of nodes and edges is described. The use of graphs enables to see various types of relationships, including mediate. The features of the used Gephi software for data analysis are presented. This methodology enables to change the attitude towards the analysis of multidimensional objects.
- ПубликацияТолько метаданныеEvaluation of the Level-of-Detail Generator for Visual Analysis of the ATLAS Computing Metadata(2019) Grigorieva, M. A.; Titov, M. A.; Alekseev, A. A.; Klimentov, A. A.; Artamonov, A. A.; Milman, I. E.; Galkin, T. P.; Pilyugin, V. V.; Артамонов, Алексей Анатольевич; Пилюгин, Виктор Васильевич© 2019, Pleiades Publishing, Ltd.The ATLAS experiment at the LHC processes, analyses and stores vast amounts of data, which is either recorded by the detector or simulated worldwide using Monte Carlo methods. ATLAS Computing metadata is generated at very high rates and volumes. The necessity to analyze this metadata is constantly increasing, since the heterogeneous, distributed and dynamically changing computing infrastructure requires sophisticated optimization decisions, made by human or/and by machines. Visual analytics is one of the methods facilitating the analysis of massive amounts of data (structured, semi-structured, and unstructured) which leverages human judgement by means of interactive visual representations. Given the huge number of ATLAS computing jobs that need to be visualized simultaneously for error investigations or other optimization processes, resources of the client application responsible for such visualization may reach its limits. Data objects that share similar feature values can be represented and visualized as a single group, thus initial large data sample would be represented at different levels of detail. This approach will also avoid client overload. In this paper we evaluate implementations of k-means-based Level-of-Detail generator method applied to the metadata of ATLAS jobs. This method is used in the visual analytics application InVEx (Interactive Visual Explorer) that is under development, and which is based on 3-dimensional interactive visualization of multidimensional data.
- ПубликацияТолько метаданныеMultiagent information technologies in system analysis(2019) Inkina, V. A.; Antonov, E. V.; Artamonov, A. A.; Ionkina, K. V.; Tretyakov, E. S.; Cherkasskiy, A. I.; Антонов, Евгений Вячеславович; Артамонов, Алексей Анатольевич; Ионкина, Кристина Вячеславовна; Черкасский, Андрей ИгоревичCopyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).Agent technologies currently play an increasingly important role in the information technology industry given its ability to learn and evolve, to solve information management problems, to employ data visualization and many other benefits. As a computer program, an agent deals with a challenge Internet users face every single day: to obtain reliable and effective data in the specific thematic field. Multiagent system consists of two or more autonomous agents and aimed at solving complex problems, such as Big Data, Data mining, primary structured and unstructured information processing (including text, numbers and multimedia types of data).
- ПубликацияТолько метаданныеComplex Objects Identification and Analysis Mechanisms(2021) Ulizko, M.; Tukumbetova, R.; Tretyakov, E.; Pronicheva, L.; Artamonov, A.; Проничева, Лариса Владимировна; Артамонов, Алексей Анатольевич© 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.Currently the volume of information on the Internet global network is inclined to increase. It affects various areas of activity. The paper presents the issue of identifying and analyzing complex objects in the context of information sources devoted to project activity of the US National Institutes of Health (NIH). As part of the solution to the problem, information sources relevant to the provided topic were found, and the data were downloaded with the use of agent techniques. The methods of primary analysis and data processing were developed to create a data storage structures in SQL and NoSQL models. The analysis of the presented database models was conducted, their advantages and disadvantages were revealed. As a result software tools have been developed that provide data representation of a complex object and organization of work with it by web interface.
- ПубликацияТолько метаданныеTRACER (TRACe route ExploRer): A tool to explore OSG/WLCG network route topologies(2021) Grigorieva, M.; Tretyakov, E.; Artamonov, A.; Klimentov, A.; McKee, S.; Vukotic, I.; Артамонов, Алексей Анатольевич© 2021 World Scientific Publishing Company.The experiments at the Large Hadron Collider (LHC) rely upon a complex distributed computing infrastructure (WLCG) consisting of hundreds of individual sites worldwide at universities and national laboratories, providing about half a billion computing job slots and an exabyte of storage interconnected through high speed networks. Wide Area Networking (WAN) is one of the three pillars (together with computational resources and storage) of LHC computing. More than 5 PB/day are transferred between WLCG sites. Monitoring is one of the crucial components of WAN and experiments operations. In the past years all experiments have invested significant effort to improve monitoring and integrate networking information with data management and workload management systems. All WLCG sites are equipped with perfSONAR servers to collect a wide range of network metrics. We will present the latest development to provide the 3D force directed graph visualization for data collected by perfSONAR. The visualization package allows site admins, network engineers, scientists and network researchers to better understand the topology of our Research and Education networks and it provides the ability to identify nonreliable or/and nonoptimal network paths, such as those with routing loops or rapidly changing routes.
- ПубликацияОткрытый доступРЕЦЕНЗИРОВАННЫЕ УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ФИНАНСОВОЙ БЕЗОПАСНОСТИ ПО УКРУПНЕННЫМ ГРУППАМ СПЕЦИАЛЬНОСТЕЙ(НИЯУ МИФИ, 2023) Норкина, А. Н.; Артамонов, А. А.; Морозов, Н. В.; Антонов, Е. В.; Улизко, М. С.; Ионкина, К. В.; Соколов, И. Д.; Мальцев, М. В.; Ионкина, Кристина Вячеславовна; Улизко, Михаил Сергеевич; Норкина, Анна Николаевна; Антонов, Евгений Вячеславович; Морозов, Николай Владимирович; Соколов, Иван Дмитриевич; Артамонов, Алексей АнатольевичБаза данных (БД) содержит информацию по основным сведениям дисциплины, календарному плану, перечню профильных компетенций, таблицам соответствия по укрупненным группам специальностей, фонду оценочных средств и дополнительным материалам. Объектами БД являются учебно-методические материалы по финансовой безопасности. Структурирована по укрупненным группам специальностей с указанием обязательных и необязательных тем к изучению в рамках направления подготовки и уровня обучения. Тип ЭВМ: IBM PC-совмест. ПК; ОС: Debian 11.