Персона:
Деев, Сергей Михайлович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Деев
Имя
Сергей Михайлович
Имя

Результаты поиска

Теперь показываю 1 - 10 из 71
  • Публикация
    Только метаданные
    Remodelling of biomineralization process in vitro for the development of effective anticancer nanoagents
    (2019) Kotelnikova, P.; Shipunova, V.; Deyev, S.; Деев, Сергей Михайлович
  • Публикация
    Только метаданные
    Green synthesis of silver nanoparticles for the targeted delivery to HER2-overexpressing cancer cells
    (2019) Shipunova, V.; Belova, M.; Komedchikova, E.; Babenyshev, A.; Deyev, S.; Деев, Сергей Михайлович
  • Публикация
    Только метаданные
    Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3
    (2019) Vorobyeva, A.; Schulga, A.; Konovalova, E.; Guler, R.; Deyev, S. M.; Деев, Сергей Михайлович
    © 2019, The Author(s).Radionuclide molecular imaging of HER2 expression in disseminated cancer enables stratification of patients for HER2-targeted therapies. DARPin G3, a small (14 kDa) engineered scaffold protein, is a promising probe for imaging of HER2. We hypothesized that position (C- or N-terminus) and composition (hexahistidine or (HE)3) of histidine-containing tags would influence the biodistribution of [99mTc]Tc(CO)3-labeled DARPin G3. To test the hypothesis, G3 variants containing tags at N-terminus (H6-G3 and (HE)3-G3) or at C-terminus (G3-H6 and G3-(HE)3) were labeled with [99mTc]Tc(CO)3. Labeling yield, label stability, specificity and affinity of the binding to HER2, biodistribution and tumor targeting properties of these variants were compared side-by-side. There was no substantial influence of position and composition of the tags on binding of [99mTc]Tc(CO)3-labeled variants to HER2. The specificity of HER2 targeting in vivo was confirmed. The tumor uptake in BALB/c nu/nu mice bearing SKOV3 xenografts was similar for all variants. On the opposite, there was a strong influence of the tags on uptake in normal tissues. The tumor-to-liver ratio for [99mTc]Tc(CO)3-(HE)3-G3 was three-fold higher compared to the hexahistidine-tag containing variants. Overall, [99mTc]Tc(CO)3-(HE)3-G3 variant provided the highest tumor-to-lung, tumor-to-liver, tumor-to-bone and tumor-to-muscle ratios, which should improve sensitivity of HER2 imaging in these common metastatic sites.
  • Публикация
    Только метаданные
    "Green" Synthesis of Cytotoxic Silver Nanoparticles Based on Secondary Metabolites of Lavandula Angustifolia Mill
    (2019) Belova, M. M.; Kotelnikova, P. A.; Babenyshev, A. V.; Rogozhin, E. A.; Shipunova, V. O.; Deyev, S. M.; Деев, Сергей Михайлович
    In this study, we used "green" synthesis to prepare silver nanoparticles (NPs) from aqueous plant and callus extracts of the narrow-leaved lavender Lavandula angustifolia Mill. 35.4 +/- 1.6 nm and 56.4 +/- 2.4 nm nanoparticles, colloidally stable in phosphate-buffered saline, were synthesized using the plant extract and the callus extract, respectively. NPs were characterized by spectrophotometry, dynamic light scattering, and scanning electron microscopy. We studied the dynamics of the nanoparticle synthesis and evaluated the cytotoxic properties of the plant extract-based NPs. Modification of NPs with bovine serum albumin demonstrated that blockage of the nanoparticle surface completely suppressed NP cytotoxic activity in vitro. The synthesized NPs possess localized surface plasmon resonance properties and are of small sizes, and their surface can be modified with protein molecules, which makes them promising agents for cancer theranostics.
  • Публикация
    Только метаданные
    Imaging of EpCAM expression in pancreatic cancer using radiolabelled DARPin Ec1
    (2019) Vorobyeva, A.; Schulga, A.; Abouzayed, A.; Konovalova, E.; Deyev, S. M.; Деев, Сергей Михайлович
  • Публикация
    Только метаданные
    N-terminal position of histidine-glutamate-containing tag improves biodistribution of [Tc-99m]Tc-labeled DARPin G3
    (2019) Vorobyeva, A.; Schulga, A.; Konovalova, E.; Guler, R.; Deyev, S. M.; Деев, Сергей Михайлович
  • Публикация
    Только метаданные
    On the reduction of uptake of radiolabeled DARPins in kidneys
    (2019) Vorobyeva, A.; Altai, M.; Garousi, J.; Rinne, S. S.; Deyev, S.; Деев, Сергей Михайлович
  • Публикация
    Только метаданные
    Long-Term Fate of Magnetic Particles in Mice: A Comprehensive Study
    (2021) Yaremenko, A. V.; Yuryev, M. V.; Cherkasov, V. R.; Nikitin, M. P.; Zelepukin, I. V.; Ivanov, I. N.; Deyev, S. M.; Nikitin, P. I.; Деев, Сергей Михайлович; Никитин, Петр Иванович
    © 2021 American Chemical Society.Safe application of nanoparticles in medicine requires full understanding of their pharmacokinetics including catabolism in the organism. However, information about nanoparticle degradation is still scanty due to difficulty of long-term measurements by invasive techniques. Here, we describe a magnetic spectral approach for in vivo monitoring of magnetic particle (MP) degradation. The method noninvasiveness has allowed performing of a broad comprehensive study of the 1-year fate of 17 types of iron oxide particles. We show a long-lasting influence of five parameters on the MP degradation half-life: dose, hydrodynamic size, ζ-potential, surface coating, and internal architecture. We observed a slowdown in MP biotransformation with an increase of the injected dose and faster degradation of the particles of a small hydrodynamic size. A comparison of six types of 100 nm particles coated by different hydrophilic polymer shells has shown that the slowest (t1/2 = 38 ± 6 days) and the fastest (t1/2 = 15 ± 4 days) degradations were achieved with a polyethylene glycol and polyglucuronic acid coatings, respectively. The most significant influence on the MP degradation was due to the internal architecture of the particles as the coverage of magnetic cores with a solid 39 nm polystyrene layer slowed down the half-life of the core-shell MPs from 48 days to more than 1 year. The revealed deeper insights into the particle degradation in vivo may facilitate rational design of nano- and microparticles with predictable long-term fate in vivo.
  • Публикация
    Только метаданные
    In vivo blockade of mononuclear phagocyte system with solid nanoparticles: Efficiency and affecting factors
    (2021) Mirkasymov, A. B.; Nikitin, M. P.; Zelepukin, I. V.; Nikitin, P. I.; Deyev, S. M.; Никитин, Петр Иванович; Деев, Сергей Михайлович
    © 2020 Elsevier B.V.Smart nanomaterials, contrast nanoparticles and drug nanocarriers of advanced targeting architecture were designed for various biomedical applications. Most of such agents demonstrate poor pharmacokinetics in vivo due to rapid elimination from the bloodstream by cells of the mononuclear phagocyte system (MPS). One of the promising methods to prolong blood circulation of the nanoparticles without their modification is MPS blockade. The method temporarily decreases macrophage endocytosis in response to uptake of a low-toxic non-functional material. The effect of different factors on the efficiency of macrophage blockade in vivo induced by solid nanomaterials has been studied here. Those include: blocker nanoparticle size, ζ-potential, surface coating, dose, mice strain, presence of tumor or inflammation. We found that the blocker particle coating type had the strongest effect on MPS blockade efficiency, which allowed to prolong functional particle blood circulation half-life 18 times. The mechanisms capable of regulation of the MPS blockade have been demonstrated, which can promote application of this phenomenon in medicine for improving delivery of diagnostic and therapeutic nanomaterials.
  • Публикация
    Только метаданные
    Comparison of pharmacokinetics and biodistribution of laser-synthesized plasmonic Au and TiN nanoparticles
    (2021) Tselikov, G. I.; Al-Kattan, A.; Bailly, A. -L.; Correard, F.; Popov, A. A.; Zelepukin, I. V.; Tikhonowski, G. V.; Popova-Kuznetsova, E. A.; Klimentov, S. M.; Deyev, S. M.; Kabashin, A. V.; Попов, Антон Александрович; Тихоновский, Глеб Валерьевич; Попова-Кузнецова, Елена Алефтиновна; Климентов, Сергей Михайлович; Деев, Сергей Михайлович; Кабашин, Андрей Викторович
    © 2021 Institute of Physics Publishing. All rights reserved.Plasmonic nanostructures offer wide range of diagnostic and therapeutic functionalities for biomedical applications. Gold nanoparticles (Au NPs) present one of the most explored nanomaterial in this field, while titanium nitride nanoparticles (TiN NPs) is a new promising nanomaterial with superior plasmonic properties for biomedicine. However conventional chemical techniques for the synthesis of these nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au and TiN NPs offer exceptional purity (no contamination by by-products or ligands) and unusual surface chemistry. Therefore, these NPs present a viable alternative to chemically synthesized counterparts. This work presents comparative analysis of pharmacokinetics and biodistribution of laser-synthesized 20 nm Au and TiN NPs under intravenous administration in mice model. Our data show that Au NPs and bare TiN NPs are rapidly eliminated from the blood circulation and accumulate preferentially in liver and spleen, while coating of TiN NPs by hydrophilic polymer polyethylene glycol (PEG) significantly prolongates blood circulation time and improves delivery of the NPs to tumor. We finally discuss potential applications of laser synthesized Au NPs in SERS, SEIRA and electrocatalysis, while TiN nanoparticles are considered as promising agents for photothermal therapy and photoacoustic imaging.