Персона:
Облов, Константин Юрьевич

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт нанотехнологий в электронике, спинтронике и фотонике
Институт ИНТЭЛ занимается научной деятельностью и подготовкой специалистов в области исследования физических принципов, проектирования и разработки технологий создания компонентной базы электроники гражданского и специального назначения, а также построения современных приборов на её основе. ​Наша основная цель – это создание и развитие научно-образовательного центра мирового уровня в области наноструктурных материалов и устройств электроники, спинтроники, фотоники, а также создание эффективной инновационной среды в области СВЧ-электронной и радиационно-стойкой компонентной базы, источников ТГц излучения, ионно-кластерных технологий материалов.​
Статус
Фамилия
Облов
Имя
Константин Юрьевич
Имя

Результаты поиска

Теперь показываю 1 - 3 из 3
  • Публикация
    Открытый доступ
    MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors
    (2023) Litvinov, A.; Etrekova, M.; Podlepetsky, B.; Samotaev, N.; Oblov, K.; Литвинов, Артур Васильевич; Этрекова, Майя Оразгельдыевна; Подлепецкий, Борис Иванович; Самотаев, Николай Николаевич; Облов, Константин Юрьевич
    The features of the wide band gap SiC semiconductor use in the capacitive MOSFE sensors structure in terms of the hydrogen gas sensitivity effect, the response speed, and the measuring signals optimal parameters are studied. Sensors in a high-temperature ceramic housing with the Me/Ta2O5/SiCn+/4H-SiC structures and two types of gas-sensitive electrodes were made: Palladium and Platinum. The effectiveness of using Platinum as an alternative to Palladium in the MOSFE-Capacitor (MOSFEC) gas sensors high-temperature design is evaluated. It is shown that, compared with Silicon, the use of Silicon Carbide increases the response rate, while maintaining the sensors high hydrogen sensitivity. The operating temperature and test signal frequency influence for measuring the sensor s capacitance on the sensitivity to H2 have been studied.
  • Публикация
    Открытый доступ
    Thermal Conductivity Gas Sensors for High-Temperature Applications
    (2024) Samotaev, N.; Podlepetsky, B.; Mashinin, M.; Ivanov, I.; Obraztsov, I.; Oblov, K.; Dzhumaev, P.; Самотаев, Николай Николаевич; Подлепецкий, Борис Иванович; Машинин, Михаил Олегович; Иванов, Игорь Александрович; Образцов, Иван Сергеевич; Облов, Константин Юрьевич; Джумаев, Павел Сергеевич
    This paper describes a fast and flexible microfabrication method for thermal conductivity gas sensors useful in high-temperature applications. The key parts of the sensor, the microheater and the package, were fabricated from glass-coated platinum wire and the combination of laser micromilling (ablation) of already-sintered monolithic ceramic materials and thick-film screen-printing technologies. The final thermal conductivity gas sensor was fabricated in the form of a complete MEMS device in a metal ceramic package, which could be used as a compact miniaturized surface-mounted device for soldering to standard PCB. Functional test results of the manufactured sensor are presented, demonstrating their full suitability for gas sensing applications and indicating that the obtained parameters are at a level comparable to those of standard industrially produced sensors. The results of the design and optimization principles of applied methods are discussed with regard to possible wider applications in thermal gas sensor prototyping in the future. The advantage of the developed sensors is their ability to operate in air environments under high temperatures of 900 ‚шC and above. The sensor element material and package metallization were insensitive to oxidation compared with classical sensor-solution-based metalў??glass packages and silicone MEMS membranes, which exhibit mechanical stress at temperatures above 700 ‚шC.
  • Публикация
    Открытый доступ
    Combination of Material Processing and Characterization Methods for Miniaturization of Field-Effect Gas Sensor
    (2023) Samotaev, N.; Litvinov, A.; Oblov, K.; Etrekova, M.; Podlepetsky, B.; Dzhumaev, P. S.; Самотаев, Николай Николаевич; Литвинов, Артур Васильевич; Облов, Константин Юрьевич; Этрекова, Майя Оразгельдыевна; Подлепецкий, Борис Иванович; Джумаев, Павел Сергеевич
    The technological approach for the low-scale production of field-effect gas sensors as electronic components for use in non-lab ambient environments is described. In this work, in addition to the mechanical protection of a gas-sensitive structure, an emphasis was also placed on the very topical issue of thermal stabilization around the one temperature point, even if it is several degrees higher than the surrounding one, which will probably also be useful for any type of application for many types of field-effect sensors. Considerable attention was paid to the characterization of the results obtained by various invasive and non-invasive methods for diagnosing the manufactured construction. The technology described in this article occupies an intermediate position between laboratory samples tested in clean rooms with stable ambient atmospheres, and experimental and small-scale production sensors designed for real operating conditions to solve the narrow application of measuring low concentrations of hydrogen.