Персона: Степанова, Татьяна Владимировна
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Степанова
Имя
Татьяна Владимировна
Имя
5 results
Результаты поиска
Теперь показываю 1 - 5 из 5
- ПубликацияТолько метаданныеDirect ion content measurements in a non-sputtering magnetron discharge(2019) Kaziev, A. V.; Kolodko, D. V.; Ageychenkov, D. G.; Tumarkin, A. V.; Kharkov, M. M.; Stepanova, T. V.; Казиев, Андрей Викторович; Колодко, Добрыня Вячеславич; Агейченков, Дмитрий Григорьевич; Тумаркин, Александр Владимирович; Харьков, Максим Михайлович; Степанова, Татьяна ВладимировнаIn present contribution we report the first direct measurements of ion fluxes in a nonsputtering magnetron discharge (NSMD) with Al cathode in Ar/O-2 mixtures. The diagnostic unit comprising three-electrode electrostatic lens ion extractor, magnetic sector mass-analyzer, and a vacuum electron multiplier was calibrated and then used to record the time-resolved ion counts of Al+ and Ar+ both in NSMD and arc regimes. The results clearly indicate that in NSMD the dominant species are Ar ions while Al ion signal is lower than the sensitivity limit due to noise level, in contrast to the arc discharge. The capabilities of the diagnostics setup and its sensitivity limits are discussed.
- ПубликацияТолько метаданныеAnalysis of the Near-Surface Layers of Lithium Coatings Using Laser Induced Breakdown Spectroscopy(2019) Vovchenko, E. D.; Krat, S. A.; Kostyushin, V. A.; Khar'kov, M. M.; Bulgadaryan, D. G.; Prishvitsyn, A. S.; Stepanova, T. V.; Kurnaev, V. A.; Zakharov, L. E.; Вовченко, Евгений Дмитриевич; Крат, Степан Андреевич; Харьков, Максим Михайлович; Пришвицын, Александр Сергеевич; Степанова, Татьяна Владимировна© 2019, Pleiades Publishing, Ltd.The paper reports results of studying the geometry of craters formed by the action of laser pulses on solid-state targets of aluminum and lithium films at a power density on the target of (1–5) × 1010 W/cm2 and variation of the number of pulses in the range of 1–150, as well as the results of ex situ layer-by-layer analysis of lithium films on quartz coatings carried out using the method laser induced breakdown spectroscopy to determine the thickness of the films.
- ПубликацияОткрытый доступOptical radiation from plasma of abnormal glow discharge in various gas mixtures(2019) Muller, T.; Misozhnikov, L.; Stepanova, T. V.; Borisyuk, Y. V.; Mozgrin, D. V.; Nenashev, P. S.; Norakidze, V. S.; Oreshnikova, N. M.; Pisarev, A. A.; Степанова, Татьяна Владимировна; Писарев, Александр Александрович© Published under licence by IOP Publishing Ltd.Optical radiation from plasma of abnormal glow discharge in Ar+N2, He+ N2 and N2+H2 was investigated. Lines of N2 N2 +, N, N+, Ar+, Ar, He, Fe, H, H2 and OH were detected by optical spectrometry. Discharge current and intensities of spectral lines of N2, N2 +, N, and N+ versus the concentration of Ar, He, and H2 in the gas mixtures were measured at various compositions of the working gas.
- ПубликацияОткрытый доступСПОСОБ СОЗДАНИЯ ПРИЁМНОЙ ПЛАСТИНЫ ДИВЕРТОРА ТОКАМАКА(Частное учреждение по обеспечению научного развития атомной отрасли "Наука и инновации", 2023) Писарев, А. А.; Тарасюк, Г. М.; Степанова, Т. В.; Душик, В. В.; Шапоренков, А. А.; Степанова, Татьяна Владимировна; Тарасюк, Григорий Михайлович; Писарев, Александр АлександровичИзобретение относится к области термоядерной техники и может быть использовано для создания приемной пластины дивертора токамака, основанного на концепции текущего слоя жидкого лития. В реакционной камере с прогреваемыми стенками размещают медную подложку, сначала в ней создают вакуум, а затем в неё подают водород со скоростью 3 л/ч до давления 5 мм рт. ст. с одновременным включением нагревателей стенок, нагревая таким образом подложку до температуры не менее 500°С и не более 0,8 от абсолютной температуры плавления меди. Подложку выдерживают при этой температуре не более 1 ч. После этого увеличивают скорость подачи водорода до 9 л/ч и вводят гексафторид вольфрама из сосуда, предварительного нагретого до температуры, не превышающей 50°С, со скоростью 3 л/ч таким образом, что общее давление газа в смеси остается постоянным и равным 5 мм рт. ст., а объёмное соотношение WF6:H2 равно 1:3. Таким образом наносят на подложку вольфрам путём разложения гексафторида вольфрама в течение не менее 3 ч. Толщина слоя вольфрама не менее 30 мкм и не более 0,5 мм. Далее подачу водорода и гексафторида вольфрама прекращают и создают в реакционной камере вакуум. Охлаждение проводят в среде водорода, для чего его снова напускают в реакционную камеру до давления не менее 200 мм рт. ст. Полученная приемная пластина дивертора токамака обладает улучшенными эксплуатационными характеристиками за счёт хорошей теплопроводности, стойкости к термоциклированию и коррозионной стойкости к литию, что обеспечивает улучшение срока её службы. 6 ил., 2 табл., 2 пр.
- ПубликацияОткрытый доступУСТРОЙСТВО ДЛЯ ОСАЖДЕНИЯ МЕТАЛЛИЧЕСКИХ ПЛЕНОК(НИЯУ МИФИ, 2023) Сорокин, И. А.; Колодко, Д. В.; Степанова, Т. В.; Степанова, Татьяна Владимировна; Колодко, Добрыня ВячеславичИзобретение относится к вакуумно-плазменной технике, а именно к источникам атомов металлов преимущественно для осаждения тонких металлических пленок на металлические или диэлектрические подложки в вакуумной камере. Технический результат - повышение скорости нанесения покрытий и упрощение конструкции устройства. Устройство для нанесения металлических пленок содержит вакуумную камеру, полый катод, мишень, держатель подложки, источник питания разряда положительным полюсом, соединенный с анодом, а отрицательным полюсом с катодом, а также дополнительный источник напряжения смещения. Полый катод устройства состоит из двух параллельных друг другу плоских электродов, размещенных относительно друг друга на расстоянии от 10 до 40 мм, первый электрод выполнен с возможностью водоохлаждения, при этом на его поверхности установлена мишень из распыляемого материала. Напротив первого электрода параллельно поверхности с установленной мишенью из распыляемого материала размещен второй электрод, выполненный из тугоплавкого материала в виде прозрачной сетки с ячейкой размерами от 10 мкм до 5 мм, за которым параллельно ему размещен держатель подложек на расстоянии до 100 мм. Анодом служат стенки вакуумной камеры, а дополнительный источник напряжения смещения положительным полюсом соединен с отрицательным полюсом источника питания разряда, а отрицательным полюсом с первым электродом катода. 2 ил.