Publication:
Data-Driven Model for Emotion Detection in Russian Texts

Дата
2021
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
© 2020 Elsevier B.V.. All rights reserved.An important task in the field of automatic data analysis is detecting emotions in texts. The paper presents the approach of emotion recognition for text data in Russian. To conduct an emotion analysis, a method was created based on vector representations of words obtained by the ELMo language model, and subsequent processing by an ensemble classifier. To configure and test the created method, a specially prepared dataset of texts for five basic emotions - joy, sadness, anger, fear, and surprise - is used. The dataset was prepared using a crowdsourcing platform and a home-grown procedure for collecting and controlling annotators' markup. The overall accuracy is 0.78 (by the F1-macro score), which is currently the new state of the art for Russian. The results can be used for a wide range of tasks, for example: monitoring social moods, generating control signals for mobile robotic systems, etc.
Описание
Ключевые слова
Цитирование
Naumov, A. Data-Driven Model for Emotion Detection in Russian Texts / Naumov, A., Rybka, R., Sboev, A. // Procedia Computer Science. - 2021. - 190. - P. 637-642. - 10.1016/j.procs.2021.06.075
Коллекции