Publication:
Physics of proton therapy treatment planning

Дата
2019
Авторы
Samoylov, A. S.
Gadzhinov, A. E.
Peshkin, Ya. A.
Klimanov, V. A.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Выпуск журнала
Аннотация
© 2019 State Research Center, Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. All rights reserved.The most important stage of radiation therapy of oncological diseases is the planning of radiation treatment. In this work, this complex process in relation to proton therapy is proposed to be divided into medical and physical planning. In conventional therapy with photons and electrons, the latter is usually called dosimetric planning, however, when applied to proton radiation therapy, this stage involves a significantly wider range of tasks related to the modification and scanning of the proton beam, spreading and compensation of ranges, taking into account when planning for uncertainties and finiteness of proton ranges, a decrease in the contribution to the dose of secondary neutrons, the creation of error-tolerant optimization algorithms for dosimetric plans, and, finally, a precision calculation of dose distributions. The paper discusses the main stages and problems of physical planning of proton radiation therapy. Particular attention is paid to the formation of an extended high-dose region (extended Bragg peak) using the beam scattering method and scanning method, and to the algorithms for calculating the dose distributions created by protons in the scattering and beam scanning systems. The most detailed consideration is given to different versions of the proton pencil beam method, which allows to increase the dose calculation accuracy and take into account the transverse scattering and fuctuations in proton energy losses, especially at the end of the path (halo effect), analytical and numerical methods. Scanning are divided into three main technologies: homogeneous scanning, single field uniform dose (SFUD), multi-field uniform dose (MFUD), ofen called intensity modulated proton therapy (IMPT). Actual accounting problems are considered when planning the irradiation of the movement of organs, and uncertainties in determining path lengths and optimization of irradiation plans. In particular features, problems and modern approaches to the optimization of dosimetry plans of proton radiation therapy are discussed. It is noted that one of the most promising practical solutions for the uncertainty management in determining the path lengths of protons in optimization is to include possible errors in the objective function of the optimization algorithm. This technique ensures that an optimized irradiation plan will more reliably protect normal tissues and critical organs adjacent to the irradiation target from overexposure.
Описание
Ключевые слова
Цитирование
Physics of proton therapy treatment planning / Samoylov, A.S. [et al.] // Medical Radiology and Radiation Safety. - 2019. - 64. - № 2. - P. 23-32. - 10.12737/article-5ca5e2677a1a06.60363700
Коллекции