Publication: Using Machine Learning to Analyze Network Traffic Anomalies
dc.contributor.author | Khudoyarova, A. | |
dc.contributor.author | Burlakov, M. | |
dc.contributor.author | Kupriyashin, M. | |
dc.contributor.author | Куприяшин, Михаил Андреевич | |
dc.date.accessioned | 2024-11-29T15:24:18Z | |
dc.date.available | 2024-11-29T15:24:18Z | |
dc.date.issued | 2021 | |
dc.description.abstract | © 2021 IEEE.In this paper, we study the application of machine learning methods, as well as spectral and statistical methods for real time network traffic anomaly detection. We determine the strengths and weaknesses of the existing methods and compare them in terms of efficiency. We then build a system of criteria to ensure the most efficient anomaly detection while meeting the specified system performance and resource consumption requirements. As a result, we suggest a set of the most effective anomaly detection methods as well as recommendations on the underlying system architecture. | |
dc.format.extent | С. 2344-2348 | |
dc.identifier.citation | Khudoyarova, A. Using Machine Learning to Analyze Network Traffic Anomalies / Khudoyarova, A., Burlakov, M., Kupriyashin, M. // Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021. - 2021. - P. 2344-2348. - 10.1109/ElConRus51938.2021.9396246 | |
dc.identifier.doi | 10.1109/ElConRus51938.2021.9396246 | |
dc.identifier.uri | https://www.doi.org/10.1109/ElConRus51938.2021.9396246 | |
dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85104780669&origin=resultslist | |
dc.identifier.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000669709802080 | |
dc.identifier.uri | https://openrepository.mephi.ru/handle/123456789/23979 | |
dc.relation.ispartof | Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021 | |
dc.title | Using Machine Learning to Analyze Network Traffic Anomalies | |
dc.type | Conference Paper | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d121410c-d598-45ff-aa9f-b1be65adf4c5 | |
relation.isAuthorOfPublication.latestForDiscovery | d121410c-d598-45ff-aa9f-b1be65adf4c5 | |
relation.isOrgUnitOfPublication | 010157d0-1f75-46b2-ab5b-712e3424b4f5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 010157d0-1f75-46b2-ab5b-712e3424b4f5 |