Publication:
Using Machine Learning to Analyze Network Traffic Anomalies

Дата
2021
Авторы
Khudoyarova, A.
Burlakov, M.
Kupriyashin, M.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Выпуск журнала
Аннотация
© 2021 IEEE.In this paper, we study the application of machine learning methods, as well as spectral and statistical methods for real time network traffic anomaly detection. We determine the strengths and weaknesses of the existing methods and compare them in terms of efficiency. We then build a system of criteria to ensure the most efficient anomaly detection while meeting the specified system performance and resource consumption requirements. As a result, we suggest a set of the most effective anomaly detection methods as well as recommendations on the underlying system architecture.
Описание
Ключевые слова
Цитирование
Khudoyarova, A. Using Machine Learning to Analyze Network Traffic Anomalies / Khudoyarova, A., Burlakov, M., Kupriyashin, M. // Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021. - 2021. - P. 2344-2348. - 10.1109/ElConRus51938.2021.9396246
Коллекции