Publication:
3D Multiclass Digital Core Models via microCT, SEM-EDS and Deep Learning

Дата
2023
Авторы
Varfolomeev, I.
Svinin, V.
Yakimchuk, I.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Выпуск журнала
Аннотация
We describe an integrated methodology for constructing a 3D multiclass model of a rock sample, based on X-ray microtomography (microCT) and quantitative evaluation of minerals (QEMSCAN) by automated SEM-EDS (Scanning Electron Microscopy, Energy Dispersive Spectroscopy). We focus on building an automated operator-independent workflow, allowing to distinguish between voxels featuring substantially different physical properties, such as void, quartz, denser and less dense clay aggregates. The workflow is demonstrated using a set of five вЊЂ8 mm Berea sandstone miniplugs. For each miniplug, a ~4000 3 voxel microCT image is acquired. Next, each miniplug is cut into smaller pieces, and the 45 resulting polished surfaces are subjected to the QEMSCAN analysis, producing ~4000 2 pixel mineral maps. Each mineral map is automatically spatially registered with the corresponding microCT image using an in-house surface-based algorithm. Further, the ground truth images for the supervised multiclass segmentation are constructed from the mineral maps. We compare 3D and 2D convolutional neural network (CNN) architectures with the baseline NaГЇve Bayes classifier, which is roughly equivalent to the approaches commonly used in practice today. We find that supervised CNN-based segmentation is fairly stable, despite microCT image quality non-uniformness and achieves higher quality scores compared to feature based and baseline approaches.
Описание
Ключевые слова
Pore-scale Modeling , Ground truth , DEM Modelling
Цитирование
Varfolomeev, I. 3D Multiclass Digital Core Models via microCT, SEM-EDS and Deep Learning / Varfolomeev, I., Svinin, V., Yakimchuk, I. // E3S Web of Conferences. - 2023. - 366. - 10.1051/e3sconf/202336601003
Коллекции