Publication:
3D Multiclass Digital Core Models via microCT, SEM-EDS and Deep Learning

dc.contributor.authorVarfolomeev, I.
dc.contributor.authorSvinin, V.
dc.contributor.authorYakimchuk, I.
dc.date.accessioned2024-12-28T08:44:45Z
dc.date.available2024-12-28T08:44:45Z
dc.date.issued2023
dc.description.abstractWe describe an integrated methodology for constructing a 3D multiclass model of a rock sample, based on X-ray microtomography (microCT) and quantitative evaluation of minerals (QEMSCAN) by automated SEM-EDS (Scanning Electron Microscopy, Energy Dispersive Spectroscopy). We focus on building an automated operator-independent workflow, allowing to distinguish between voxels featuring substantially different physical properties, such as void, quartz, denser and less dense clay aggregates. The workflow is demonstrated using a set of five вЊЂ8 mm Berea sandstone miniplugs. For each miniplug, a ~4000 3 voxel microCT image is acquired. Next, each miniplug is cut into smaller pieces, and the 45 resulting polished surfaces are subjected to the QEMSCAN analysis, producing ~4000 2 pixel mineral maps. Each mineral map is automatically spatially registered with the corresponding microCT image using an in-house surface-based algorithm. Further, the ground truth images for the supervised multiclass segmentation are constructed from the mineral maps. We compare 3D and 2D convolutional neural network (CNN) architectures with the baseline NaГЇve Bayes classifier, which is roughly equivalent to the approaches commonly used in practice today. We find that supervised CNN-based segmentation is fairly stable, despite microCT image quality non-uniformness and achieves higher quality scores compared to feature based and baseline approaches.
dc.identifier.citationVarfolomeev, I. 3D Multiclass Digital Core Models via microCT, SEM-EDS and Deep Learning / Varfolomeev, I., Svinin, V., Yakimchuk, I. // E3S Web of Conferences. - 2023. - 366. - 10.1051/e3sconf/202336601003
dc.identifier.doi10.1051/e3sconf/202336601003
dc.identifier.urihttps://www.doi.org/10.1051/e3sconf/202336601003
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85147439639&origin=resultslist
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/29944
dc.relation.ispartofE3S Web of Conferences
dc.subjectPore-scale Modeling
dc.subjectGround truth
dc.subjectDEM Modelling
dc.title3D Multiclass Digital Core Models via microCT, SEM-EDS and Deep Learning
dc.typeConference Paper
dspace.entity.typePublication
oaire.citation.volume366
relation.isOrgUnitOfPublication010157d0-1f75-46b2-ab5b-712e3424b4f5
relation.isOrgUnitOfPublication.latestForDiscovery010157d0-1f75-46b2-ab5b-712e3424b4f5
Файлы
Original bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
W4319996591.pdf
Size:
22.96 MB
Format:
Adobe Portable Document Format
Description:
Коллекции