Publication: Kink solutions in logarithmic scalar field theory: Excitation spectra, scattering, and decay of bions
Дата
2021
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Аннотация
© 2021 The Author(s)We consider the (1+1)-dimensional Lorentz-symmetric field-theoretic model with logarithmic potential having a Mexican-hat form with two local minima similar to that of the quartic Higgs potential in conventional electroweak theory with spontaneous symmetry breaking and mass generation. We demonstrate that this model allows topological solutions — kinks. We analyze the kink excitation spectrum, and show that it does not contain any vibrational modes. We also study the scattering dynamics of kinks for a wide range of initial velocities. The critical value of the initial velocity occurs in kink-antikink collisions, which thus differentiates two regimes. Below this value, we observe the capture of kinks and their fast annihilation; while above this value, the kinks bounce off and escape to spatial infinities. Numerical studies show no resonance phenomena in the kink-antikink scattering.
Описание
Ключевые слова
Цитирование
Zloshchastiev, K. G. Kink solutions in logarithmic scalar field theory: Excitation spectra, scattering, and decay of bions / Zloshchastiev, K.G., Belendryasova, E., Gani, V.A. // Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - 2021. - 823. - 10.1016/j.physletb.2021.136776
URI
https://www.doi.org/10.1016/j.physletb.2021.136776
https://www.scopus.com/record/display.uri?eid=2-s2.0-85119075923&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000753941300016
https://openrepository.mephi.ru/handle/123456789/24935
https://www.scopus.com/record/display.uri?eid=2-s2.0-85119075923&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000753941300016
https://openrepository.mephi.ru/handle/123456789/24935