Publication:
Нелинейное уравнение Шредингера общего вида: многофункциональная модель, редукции и точные решения

Дата
2025
Авторы
Полянин, А. Д.
Кудряшов, Н. А.
Journal Title
Journal ISSN
Volume Title
Издатель
НИЯУ МИФИ
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Аннотация
Представлена новая математическая модель, основанная на нелинейном уравнении Шредингера с шестью произвольными функциями и позволяющая учитывать различные факторы. Эта многофункциональная модель является обобщением более простых родственных нелинейных моделей, которые часто встречаются в различных разделах теоретической физики, включая нелинейную оптику, сверхпроводимость и физику плазмы. Для анализа рассматриваемого нелинейного уравнения используется комбинация метода функциональных связей и методов обобщенного разделения переменных. Описаны одномерные несимметрийные редукции, приводящие исследуемое сложное уравнение в частных производных к более простым обыкновенным дифференциальным уравнениям или системам таких уравнений. Найден ряд точных решений нелинейного уравнения Шредингера общего вида, которые выражаются в квадратурах или элементарных функциях. Получены как периодические решения по времени, так и по пространственной переменной. Специальное внимание уделено некоторым более узким классам уравнений с меньшим числом произвольных функций. Описанная общая многофункциональная модель путем конкретизации вида произвольных функций позволяет эффективно анализировать многочисленные более простые модели и находить их точные решения. Полученные в данной работе точные решения могут использоваться в качестве тестовых задач, предназначенных для проверки адекватности и оценки точности численных и приближенных аналитических методов интегрирования нелинейных уравнений математической физики.
Описание
Ключевые слова
Несимметричные редукции , Решения с обобщенным разделением переменных , Решения в квадратурах , Точные решения , Нелинейная оптика , Нелинейные УЧП общего вида , Нелинейное уравнение Шредингера
Цитирование
Полянин А.Д., Кудряшов Н.А. НЕЛИНЕЙНОЕ УРАВНЕНИЕ ШРЕДИНГЕРА ОБЩЕГО ВИДА: МНОГОФУНКЦИОНАЛЬНАЯ МОДЕЛЬ, РЕДУКЦИИ И ТОЧНЫЕ РЕШЕНИЯ. Вестник НИЯУ МИФИ. 2025;14(1):24-36. https://doi.org/10.26583/vestnik.2025.1.3. EDN: DXKPEC
Коллекции