Publication:
On Monotonic Finite Difference Schemes

dc.contributor.authorPopov, I. V.
dc.contributor.authorПопов, Игорь Викторович
dc.date.accessioned2024-11-25T18:17:57Z
dc.date.available2024-11-25T18:17:57Z
dc.date.issued2020
dc.description.abstract© 2020, Pleiades Publishing, Ltd.Abstract: We propose an approach to construct monotonic finite difference schemes for solving the simplest elliptic and parabolic equations with the first derivatives and a small parameter at the highest derivative. For this, the notion of adaptive artificial viscosity is introduced. The adaptive artificial viscosity is used to construct monotonic difference schemes with the flow approximation of order O(h4 for the boundary layer problem and O(τ2+h2) for Burgers’ equation, where h and τ are mesh steps in space and time, respectively. The Samarskii–Golant approximation (or upwind difference schemes) is used outside the region of high gradients. The importance of using schemes of second-order accuracy in time is outlined. The computational results are presented.
dc.format.extentС. 195-209
dc.identifier.citationPopov, I. V. On Monotonic Finite Difference Schemes / Popov, I.V. // Mathematical Models and Computer Simulations. - 2020. - 12. - № 2. - P. 195-209. - 10.1134/S207004822002012X
dc.identifier.doi10.1134/S207004822002012X
dc.identifier.urihttps://www.doi.org/10.1134/S207004822002012X
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85083155981&origin=resultslist
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/20619
dc.relation.ispartofMathematical Models and Computer Simulations
dc.titleOn Monotonic Finite Difference Schemes
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.volume12
relation.isAuthorOfPublication70dc2e2c-817d-4634-b15b-226632012fe0
relation.isAuthorOfPublication.latestForDiscovery70dc2e2c-817d-4634-b15b-226632012fe0
relation.isOrgUnitOfPublicationd19559ab-04cd-486a-ae8e-f40ccd36a1a6
relation.isOrgUnitOfPublication.latestForDiscoveryd19559ab-04cd-486a-ae8e-f40ccd36a1a6
Файлы
Коллекции