Publication: ПОВЫШЕНИЕ ТОЧНОСТИ ОПРЕДЕЛЕНИЯ ДЕВИАНТНЫХ ГРУПП ПРИ ПОДБОРЕ И МОНИТОРИНГЕ ПЕРСОНАЛА ПРЕДПРИЯТИЙ КРИТИЧЕСКОЙ ИНФОРМАЦИОННОЙ ИНФРАСТРУКТУРЫ
Дата
2025
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
НИЯУ МИФИ
Аннотация
Целью статьи является разработка эффективного подхода повышения достоверности результатов мониторинга и профилактики девиантного поведения персонала на предприятиях критической информационной инфраструктуры (КИИ). Безопасность предприятий КИИ зависит не только от технических решений, но и от человеческого фактора. Нарушения, связанные с действиями персонала, представляют собой серьёзную угрозу устойчивости функционирования предприятий КИИ. Эффективные подходы к оценке поведения сотрудников предприятий КИИ на основе их цифрового профиля, поведенческих признаков позволяют повысить качество и точность подбора и мониторинга персонала, что позволяет значительно минимизировать риски внутренних угроз. Рассматривается метод обработки данных в которых известны описания множества факторов поведения как потенциальных, так и действующих работников. Суть метода – выполнение кластеризации для деления большого массива данных поведения сотрудников предприятий КИИ на кластеры. В основе метода - итеративный алгоритм кластеризации метод k-средних, основанный на минимизации суммарных квадратичных отклонений точек кластеров от центроидов этих кластеров. Обоснована зависимость кластеризации методом k-средних от выбора начальных центров кластеров, влияющая на точность группировки работников предприятий КИИ по их многомерным поведенческим признакам, что приводит к критическим ошибкам в их классификации. С целью повышения точности кластеризации методом k-средних предлагается метод, в основе которого – алгоритм инициализации центроидов случайным образом, определяющий k начальных точек, которые служат временными центрами кластеров и выбор оптимальных по метрике – среднее внутрикластерное расстояние. Проведенный численный эксперимент показал, что различия в результатах кластеризации при разных инициализациях достигают статистически значимых величин. Построены гистограмма и тепловая карта, визуализирующие предпочтительные зоны выбора центроидов. Предложенный метод позволяет повысить достоверность получаемых в результате кластеризации данных при автоматизированной классификации потенциальных и действующих сотрудников предприятий КИИ по их цифровым профилям, множеству факторов их поведения. Данный метод целесообразно использовать в системах мониторинга и профилактики девиантного поведения персонала на предприятиях КИИ.
Описание
Ключевые слова
Тепловая карта , Среднее внутрикластерное расстояние , Инициализация центроидов , Девиация , Итеративный алгоритм , Метод k-средних , Кластерный анализ , Поведенческие признаки , Цифровой профиль , Безопасность предприятий КИИ
Цитирование
Евсеев, Владимир Л.; Бураков, Антон С.; Марченко, Анатолий В. Повышение точности определения девиантных групп при подборе и мониторинге персонала предприятий критической информационной инфраструктуры. Безопасность информационных технологий, [S.l.], т. 32, № 3, с. 121-131, 2025. ISSN 2074-7136. URL: https://bit.spels.ru/index.php/bit/article/view/1821. DOI: http://dx.doi.org/10.26583/bit.2025.3.10.