Publication: Specific features of reactive pulsed laser deposition of solid lubricating nanocomposite Mo–S–C–H thin-film coatings
Дата
2020
Авторы
Demin, M.
Shvets, P.
Maksimova, K.
Goikhman, A.
Fominski, V.
Fominski, D.
Romanov, R.
Gritskevich, M.
Journal Title
Journal ISSN
Volume Title
Издатель
Аннотация
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.This work investigates the structure and chemical states of thin-film coatings obtained by pulsed laser codeposition of Mo and C in a reactive gas (H2S). The coatings were analysed for their prospective use as solid lubricating coatings for friction units operating in extreme conditions. Pulsed laser ablation of molybdenum and graphite targets was accompanied by the effective interaction of the deposited Mo and C layers with the reactive gas and the chemical states of Mo-and C-containing nanophases were interdependent. This had a negative effect on the tribological properties of Mo–S–C–H nanocomposite coatings obtained at H2S pressures of 9 and 18 Pa, which were optimal for obtaining MoS2 and MoS3 coatings, respectively. The best tribological properties were found for the Mo–S–C–H_5.5 coating formed at an H2S pressure of 5.5 Pa. At this pressure, the x = S/Mo ratio in the MoSx nanophase was slightly less than 2, and the a-C(S,H) nanophase contained ~8 at.% S and ~16 at.% H. The a-C(S,H) nanophase with this composition provided a low coefficient of friction (~0.03) at low ambient humidity and 22◦C. The nanophase composition in Mo–S–C–H_5.5 coating demonstrated fairly good antifriction properties and increased wear resistance even at −100◦C. For wet friction conditions, Mo–S–C–H nanocomposite coatings did not have significant advantages in reducing friction compared to the MoS2 and MoS3 coatings formed by reactive pulsed laser deposition.
Описание
Ключевые слова
Цитирование
Specific features of reactive pulsed laser deposition of solid lubricating nanocomposite Mo–S–C–H thin-film coatings / Demin, M. [et al.] // Nanomaterials. - 2020. - 10. - № 12. - P. 1-24. - 10.3390/nano10122456
URI
https://www.doi.org/10.3390/nano10122456
https://www.scopus.com/record/display.uri?eid=2-s2.0-85097545037&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000602526700001
https://openrepository.mephi.ru/handle/123456789/22701
https://www.scopus.com/record/display.uri?eid=2-s2.0-85097545037&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000602526700001
https://openrepository.mephi.ru/handle/123456789/22701