Publication:
Using Machine Learning to predict survival in patients with brain metastases after Gamma Knife radiosurgery

dc.contributor.authorBanov, S.
dc.contributor.authorGolanov, A.
dc.contributor.authorKostjuchenko, V.
dc.contributor.authorDalechina, A.
dc.contributor.authorVazhenin, G.
dc.contributor.authorRyabov, P.
dc.contributor.authorРябов, Павел Николаевич
dc.date.accessioned2024-11-21T09:09:57Z
dc.date.available2024-11-21T09:09:57Z
dc.date.issued2019
dc.description.abstract© 2019 Published under licence by IOP Publishing Ltd.In this work machine learning approach was used to predict the patients overall survival after Gamma Knife radiosurgery. We constructed the regression and multiclass classification models to predict the time interval from the onset of the oncological disease to the unfavourable outcome and the patient's survival class. The models were built on data of 916 patients with 26 different primary features. The train set included patients with known clinical outcomes (445 patients). The median deviation in determining of the time from the onset of cancer to the date of death was 1.4 months. According to the regression model the most significant feature was the largest volume of the lesion by the date of the first radiosurgery. The most important feature was identified as the time interval from the date of birth to the onset of the oncological disease. The mean accuracy, according to the confusion matrix was 0,76. The accuracy of the study can be improved by the increasing of the patients number and completeness of the patient data.
dc.identifier.citationUsing Machine Learning to predict survival in patients with brain metastases after Gamma Knife radiosurgery / Banov, S. [et al.] // Journal of Physics: Conference Series. - 2019. - 1205. - № 1. - 10.1088/1742-6596/1205/1/012058
dc.identifier.doi10.1088/1742-6596/1205/1/012058
dc.identifier.urihttps://www.doi.org/10.1088/1742-6596/1205/1/012058
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85066336179&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000481606200058
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/18160
dc.relation.ispartofJournal of Physics: Conference Series
dc.titleUsing Machine Learning to predict survival in patients with brain metastases after Gamma Knife radiosurgery
dc.typeConference Paper
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume1205
relation.isAuthorOfPublication9a364e50-737b-4e17-a476-12b666d8e545
relation.isAuthorOfPublication.latestForDiscovery9a364e50-737b-4e17-a476-12b666d8e545
relation.isOrgUnitOfPublication010157d0-1f75-46b2-ab5b-712e3424b4f5
relation.isOrgUnitOfPublicationdcdb137c-0528-46a5-841b-780227a67cce
relation.isOrgUnitOfPublication.latestForDiscovery010157d0-1f75-46b2-ab5b-712e3424b4f5
Файлы
Original bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
W2944499175.pdf
Size:
932.09 KB
Format:
Adobe Portable Document Format
Description:
Коллекции