Publication:
Using the machine learning methods for resource management of high availability broadcasting containerized system

dc.contributor.authorAminova, A.
dc.contributor.authorOrlov, A.
dc.contributor.authorRovnyagin, M.
dc.contributor.authorGuminskaia, A.
dc.contributor.authorChernilin, F.
dc.contributor.authorHrapov, A.
dc.contributor.authorРовнягин, Михаил Михайлович
dc.contributor.authorХрапов, Александр Сергеевич
dc.date.accessioned2024-11-26T13:24:49Z
dc.date.available2024-11-26T13:24:49Z
dc.date.issued2020
dc.description.abstract© 2020 The Authors. Published by Elsevier B.V.Most of today applications are built on a micro-service architecture, where a large application is divided into different functional parts that can be deployed on many containers that enable good load balancing. Container management tools need system load forecasting means to timely balance system load. It is an important problem for systems with direct streams of popular events which periodically have large splashes of a load. In this paper, we propose the load prediction method for such systems in two cases: Usual and broadcasting workload. Also, we propose an architecture of adaptive infrastructure using our load forecasting method.
dc.format.extentС. 773-779
dc.identifier.citationUsing the machine learning methods for resource management of high availability broadcasting containerized system / Aminova, A. [et al.] // Procedia Computer Science. - 2020. - 169. - P. 773-779. - 10.1016/j.procs.2020.02.166
dc.identifier.doi10.1016/j.procs.2020.02.166
dc.identifier.urihttps://www.doi.org/10.1016/j.procs.2020.02.166
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85084445566&origin=resultslist
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/21770
dc.relation.ispartofProcedia Computer Science
dc.titleUsing the machine learning methods for resource management of high availability broadcasting containerized system
dc.typeConference Paper
dspace.entity.typePublication
oaire.citation.volume169
relation.isAuthorOfPublicationbea7e106-69a4-4bc0-b6f5-8d54ccf94616
relation.isAuthorOfPublicatione94f6b00-f82d-4acf-866c-78fedb2011d6
relation.isAuthorOfPublication.latestForDiscoverybea7e106-69a4-4bc0-b6f5-8d54ccf94616
relation.isOrgUnitOfPublication010157d0-1f75-46b2-ab5b-712e3424b4f5
relation.isOrgUnitOfPublication.latestForDiscovery010157d0-1f75-46b2-ab5b-712e3424b4f5
Файлы
Original bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
W3017089791.pdf
Size:
931.97 KB
Format:
Adobe Portable Document Format
Description:
Коллекции