Персона:
Коваль, Алексей Сергеевич

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт общей профессиональной подготовки (ИОПП)
Миссией Института является: фундаментальная базовая подготовка студентов, необходимая для получения качественного образования на уровне требований международных стандартов; удовлетворение потребностей обучающихся в интеллектуальном, культурном, нравственном развитии и приобретении ими профессиональных знаний; формирование у студентов мотивации и умения учиться; профессиональная ориентация школьников и студентов в избранной области знаний, формирование способностей и навыков профессионального самоопределения и профессионального саморазвития. Основными целями и задачами Института являются: обеспечение высококачественной (фундаментальной) базовой подготовки студентов бакалавриата и специалитета; поддержка и развитие у студентов стремления к осознанному продолжению обучения в институтах (САЕ и др.) и на факультетах Университета; обеспечение преемственности образовательных программ общего среднего и высшего образования; обеспечение высокого качества довузовской подготовки учащихся Предуниверситария и школ-партнеров НИЯУ МИФИ за счет интеграции основного и дополнительного образования; учебно-методическое руководство общеобразовательными кафедрами Института, осуществляющими подготовку бакалавров и специалистов по социо-гуманитарным, общепрофессиональным и естественнонаучным дисциплинам, обеспечение единства требований к базовой подготовке студентов в рамках крупных научно-образовательных направлений (областей знаний).
Статус
Фамилия
Коваль
Имя
Алексей Сергеевич
Имя

Результаты поиска

Теперь показываю 1 - 3 из 3
  • Публикация
    Только метаданные
    Cyclic Detonation of the Ternary Gas Mixture Propane–Oxygen–Steam for Producing Highly Superheated Steam
    (2020) Shamshin, I. O.; Frolov, F. S.; Nabatnikov, S. A.; Frolov, S. M.; Smetanyuk, V. A.; Koval', A. S.; Фролов, Сергей Михайлович; Коваль, Алексей Сергеевич
    © 2020, Pleiades Publishing, Ltd.Abstract: Systematic experiments were performed on an innovative pulse detonation steam superheater (PDSS) for determining the concentration limits of detonation of the ternary mixtures propane–oxygen–steam at normal atmospheric pressure. The experiments were carried out while varying the fuel–oxygen equivalence ratio (from 0.3 to 1.7) and the volume fraction of steam (from 0 to 0.7). Cyclic detonation of ternary mixtures was shown to be able to create a high-temperature gas medium that has a temperature above 2250 K and contains to 80% highly superheated steam and to 20% CO2, and also CO, O2, and H2 at low concentrations at atmospheric pressure. Such medium was proposed to be used for advanced treatment of household and industrial organic waste to produce a gas mixture of CO and H2. Because the filling of PDSS with the “cold” ternary gas mixture is periodic, the increase in the temperature of its walls and internals is insignificant, and PDSS can be built from conventional (not necessarily refractory) construction materials.
  • Публикация
    Только метаданные
    Production of highly superheated steam by cyclic detonations of propane- and methane-steam mixtures with oxygen for waste gasification
    (2021) Smetanyuk, V. A.; Shamshin, I. O.; Sadykov, I. A.; Frolov, F. S.; Frolov, S. M.; Koval', A. S.; Фролов, Сергей Михайлович; Коваль, Алексей Сергеевич
    © 2020 Elsevier LtdIt is proposed to produce highly superheated steam (HSS) for environmentally friendly steam assisted gasification of organic municipal and industrial wastes using cyclic detonations of ternary propane/methane–oxygen–steam mixtures. Systematic experiments to determine the detonation limits of such mixtures in terms of steam dilution have been conducted. The experiments are performed in an innovative pulse-detonation steam superheater (PDSSH) with cyclic detonations of ternary mixtures at variation of fuel-to-oxygen equivalence ratio (from 0.14 to 1.77 in propane mixtures and from 0.3 to 1.84 in methane mixtures) and steam volume fraction (from 0 to 0.7) at normal atmospheric pressure. The experiments are supplemented by thermodynamic calculations. Cyclic detonations of ternary propane/methane–oxygen–steam mixtures are proved to generate HSS with temperature exceeding 2250 K, when expanded to the atmospheric pressure. The detonation products of stoichiometric ternary mixtures under consideration can contain up to 80% HSS and up to 17% CO2 with trace amounts of CO, O2 and H2. As a result of deep processing (gasification) of organic wastes by such products a gaseous mixture of CO and H2 is obtained, which can be further used as a fuel gas for PDSSH operation, heat/electricity production, and as a raw material for production of methanol and synthetic motor fuels. Due to periodic filling of the PDSSH with the cool ternary gas mixture, the temperature of PDSSH walls and inner elements increases insignificantly, so that conventional (not heat-resistant) construction materials can be used for its production.
  • Публикация
    Только метаданные
    How to utilize the kinetic energy of pulsed detonation products?
    (2019) Smetanyuk, V. A.; Gusev, P. A.; Nabatnikov, S. A.; Frolov, S. M.; Koval, A. S.; Фролов, Сергей Михайлович; Коваль, Алексей Сергеевич
    © 2018 Elsevier Ltd The possibility of utilizing the kinetic energy of detonation products by a pulse turbine of the simplest water-wheel-like design during the implementation of the Zel'dovich thermodynamic cycle with pulse detonation combustion of fuel is investigated computationally and experimentally. The coefficients of utilization of the momentum and kinetic energy of detonation products in the pulse turbine with unoptimized mass and dimensions are found to be as low as 8%–16%. To improve the efficiency of the pulse turbine, it is necessary to take measures for eliminating unnecessary reflections of shock waves, to select the optimal mass and dimensions of the turbine rotor and the number of blades, to profile the blades and to select the optimal angle of attack, to optimize the size of the lateral gap between the rotor and the housing, and to select the optimum location of the exhaust duct. It is expected that the efficiency of a combined cycle including the optimized pulse turbine and conventional gas and/or steam turbines attached to the exhaust duct could be higher than the efficiency of a conventional hybrid cycle by at most 9%.