Персона:
Рачков, Валерий Иванович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Фамилия
Рачков
Имя
Валерий Иванович
Имя

Результаты поиска

Теперь показываю 1 - 4 из 4
  • Публикация
    Открытый доступ
    Высаливание америция-241 в процессе сорбции с использованием твердофазного экстрагента на основе ТОДГА.
    (НИЯУ МИФИ, 2023) Савельев, А. А.; Рачков, В. И.; Савельев, Александр Александрович; Рачков, Валерий Иванович
    На сегодняшний день в проекте «Прорыв» разрабатываются эффективные методы переработки облученного ядерного топлива (ОЯТ) для возвращения в топливный цикл долгоживущих радионуклидов с целью его замыкания. Одной из задач разработки замкнутого топливного цикла является переработка высокоактивных азотнокислых рафинатов PUREX-процесса. Для реализации данной задачи требуется выделение америция-241 из жидких радиоактивных отходов. При переработке и фракционировании ЖРО широко используют экстракционные и сорбционные технологии извлечения, очистки и концентрирования радионуклидов. Наибольшую эффективность и избирательность в процессах экстракции актиноидов (III) и лантаноидов (III) с редкоземельными (РЗЭ) и трансплутониевыми элементами (ТПЭ) из азотнокислых растворов переработки отработавших ядерных материалов показали экстрагенты на основе N, N, N’, N’ – тетраоктилдигликольамида (ТОДГА). Перед использованием твердофазного экстрагента на основе ТОДГА ионы вещества в растворе должны быть переведены в нейтральные комплексы или другие недиссоциированные соединения. Этого можно достичь путем добавления в раствор нейтральных солей, которые снижают растворимость разделяемых элементов, смещают экстракционное распределение и значительно повышают эффективность извлечения. Высаливаемое вещество извлекается в виде новой фазы – твердого осадка, жидкой или газовой фазы, причем в случае жидкостной экстракции происходит увеличение емкости экстрагента по целевому компоненту. Поэтому добавление в водную фазу солей-высаливателей, для повышения ионной силы раствора увеличивает коэффициенты распределения извлекаемых веществ, что в свою очередь, повышает емкость сорбентов. Целью настоящей работы является исследования процесса высаливания америция-241 в процессе сорбции с использованием опытного модифицированного образца ТВЭКС ТОДГА в исследуемых модельных растворах ЖРО с урановым макрокомпонентом для различных содержаний NaNO3. В результате исследования выявлено, что наиболее высокие коэффициенты распределения при сорбции америция-241 и урана были получены в растворе с содержанием 100 г/л NaNO3, однако для урана этот эффект выражен значительно меньше, чем для америция-241. В процессе исследования кинетики сорбции америция-241 и урана был выявлен эффект высаливания, который подтверждается величинами равновесных концентраций америция-241 и урана в растворе в одной и той же точке времени, но с разной концентрацией NaNO3. Для америция-241 разница в равновесных концентрациях составила порядок в сторону ее уменьшения при увеличении концентрации NaNO3 до 100 г/л. Использование данного эффекта позволяет получить максимальную емкость по америцию-241 в системе с урановым макрокомпонентов.
  • Публикация
    Только метаданные
    Studying the effective longitudinal turbulent transfer at transverse streamlining of in-line tube bundles
    (2019) Rachkov, V. I.; Fedoseev, V. N.; Pisarevsky, M. I.; Korsun, A. S.; Merinov, I. G.; Balberkina, Y. N.; Рачков, Валерий Иванович; Федосеев, Вячеслав Николаевич; Корсун, Александр Сергеевич; Меринов, Игорь Геннадьевич
    © 2019, V.I. Rachkov, V.N. Fedoseev, M.I. Pisarevskiy, A.S. Korsun, I.G. Merinov, and Yu.N. Balberkina.The experimental values of the effective thermal conductivity of water at transverse streamlining of the in-line rod bundles with square packing have been obtained. The effective thermal conductivity of water was measured in the direction parallel to the axes of the rods. The measurement method implied mixing of two flat parallel water flows in the working area; the latter moved at the same velocities, but had different temperatures. By measuring the flow temperatures before and after the mixing area, the amount of heat transferred from the hot to the cold flow was determined and the effective thermal conductivity of the liquid was calculated. In the investigated range of Reynolds numbers (from 7·103 to 8·104), calculated by the velocity in a narrow section, the experimental effective thermal conductivity of water showed a linear increase with increasing velocity and good agreement with the results of calculations by the integral turbulence model. The obtained experimental data have confirmed the possibility of using an integral turbulence model to calculate the parameters of the anisotropic porous solid model, used in CFD codes simulating thermal-hydraulic processes in the active zones of nuclear reactors and heat exchangers.
  • Публикация
    Только метаданные
    Thermal conductivity of lead in the temperature range of 350–1000 °C
    (2022) Kruglov, A. B.; Rachkov, V. I.; Merinov, I. G.; Kharitonov, V. S.; Paredes, L. P.; Круглов, Александр Борисович; Рачков, Валерий Иванович; Меринов, Игорь Геннадьевич; Харитонов, Владимир Степанович
    The article presents the results of measuring the coefficient of thermal conductivity of lead in the temperature range of 350–1000 °C using the pulse heating method. The methodology of processing experimental data is described. The estimates of the experimental data error are given. The difference in the content of impurities in the lead samples is shown to have an in significant effect on the thermal conductivity coefficient of the lead melt. The deviation of the experimental data on the thermal conductivity of lead from the proposed approximating function does not exceed ±2 %. The obtained data are compared with the known recommended dependences for calculating the thermal conductivity coefficient of lead. © 2022, A.B. Kruglov, V.I. Rachkov, I.G. Merinov, V.S. Kharitonov, and L.P. Paredes.
  • Публикация
    Только метаданные
    Correlation between the dynamic velocity and average heat transfer coefficient in transversely streamlined in-line and staggered tube bundles
    (2020) Rachkov, V. I.; Fedoseev, V. N.; Pisarevsky, M. I.; Pisarevskaya, M. I.; Рачков, Валерий Иванович; Федосеев, Вячеслав Николаевич
    © 2020, V.I. Rachkov, V.N. Fedoseev, M.I. Pisarevsky, and M.I. Pisarevskaya.On the basis of the analysis of a large array of experimental data on average heat transfer and hydraulic resistance, calculations of the dynamic velocity on the wall in deep rows of in-line and staggered tube bundles transversely streamlined by the turbulent flow of the coolant are performed. In addition, energy consumption is calculated based on experimental data on the hydraulic resistance of rod assemblies. The obtained results serve to determine the coefficient of proportionality between the dynamic velocity and the energy consumption for pumping the coolant. The proposed calculation formulas for the proportionality coefficient allow computing the average heat transfer coefficient in transversely streamlined in-line and staggered tube bundles in a wide range of rod packing spacings and Reynolds numbers, using the universal dependence of heat transfer on dynamic velocity.