Персона: Штайнер, Рудольф Вольфганг
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Штайнер
Имя
Рудольф Вольфганг
Имя
2 results
Результаты поиска
Теперь показываю 1 - 2 из 2
- ПубликацияТолько метаданныеPHOTO-INDUCED PROCESSES OF IRON OXIDE NANOPARTICLES TO ENHANCE LASER THERAPY фОТОИНдУЦИРОвАННЫЕ пРОЦЕССЫ НАНОчАСТИЦ ОКСИдА ЖЕЛЕЗА дЛя УСИЛЕНИя ЛАЗЕРНОи ТЕРАпИИ(2021) Romanishkin, I. D.; Plotnikova, E. A.; Morozova, N. B.; Wittig, R.; Pominova, D. V.; Loschenov, V. B.; Steiner, R. W.; Ryabova, A. V.; Поминова, Дарья Вячеславовна; Лощенов, Виктор Борисович; Штайнер, Рудольф Вольфганг; Рябова, Анастасия Владимировна© 2021 Russian Photodynamic Association. All rights reserved.Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic resonance imaging. Also, iron oxide nanoparticles could be coated with a photosensitizer for photodynamic therapy and their laser or magnetic heating can be used for phototherapy. Local enhancement of the electromagnetic field near iron oxide nanoparticles can increase the fluorescence intensity of photosensitizers and the efficiency of singlet oxygen generation. This paper presents the results of a study of iron oxide nanoparticles focused on the photophysical aspects of the formation of “hot spots” under laser irradiation. The photoinduced effects of iron oxide nanoparticles observed in in vitro experiments lead to the rupture of lysosomes. Theoretical modeling showed that the heating of iron oxide nanoparticles with a radius of 35 nm under the action of laser radiation is about 89°C and 19°C for wavelengths of 458 and 561 nm, respectively. Local field enhancement occurs in pairs of nanoparticles of various sizes and strongly depends on the distance between them. The maximum gain is achieved at small distances between nanoparticles. For a dimer of nanoparticles with radii of 10 and 35 nm at a distance of 1 nm, an enhancement factor of two orders of magnitude was obtained. The investigated phenomenon of «hot spots» is in demand for precision therapy, because the photo-induced processes occur at small distances between nanoparticles, in areas of their high accumulation.
- ПубликацияОткрытый доступFluorescent Microscopy of Hot Spots Induced by Laser Heating of Iron Oxide Nanoparticles(2023) Ryabova, A.; Pominova, D.; Markova, I.; Steiner, R.; Loschenov, V.; Рябова, Анастасия Владимировна; Поминова, Дарья Вячеславовна; Штайнер, Рудольф Вольфганг; Лощенов, Виктор БорисовичDetermination of the iron oxide nanoparticles (IONPs) local temperature during laser heating is important in the aspect of laser phototherapy. We have carried out theoretical modeling of IONPs local electromagnetic (EM) field enhancement and heating under the laser action near individual IONPs and ensembles of IONPs with different sizes, shapes and chemical phases. For experimental determination of IONPs temperature, we used fluorescence thermometry with rhodamine B (RhB) based on its lifetime. Depending on the IONPs shape and their location in space, a significant change in the spatial distribution of the EM field near the IONPs surface is observed. The local heating of IONPs in an ensemble reaches sufficiently high values; the relative change is about 35 В°C for Fe2O3 NPs. Nevertheless, all the studied IONPs water colloids showed heating by no more than 10 В°C. The heating temperature of the ensemble depends on the thermal conductivity of the medium, on which the heat dissipation depends. During laser scanning of a cell culture incubated with different types of IONPs, the temperature increase, estimated from the shortening of the RhB fluorescence lifetime, reaches more than 100 В°C. Such “hot spots” within lysosomes, where IONPs predominantly reside, lead to severe cellular stress and can be used for cell therapy.