Персона:
Попов, Антон Александрович

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Попов
Имя
Антон Александрович
Имя

Результаты поиска

Теперь показываю 1 - 6 из 6
  • Публикация
    Открытый доступ
    Localized infrared radiation-induced hyperthermia sensitized by laser-ablated silicon nanoparticles for phototherapy applications
    (2020) Oleshchenko, V. A.; Karpukhina, O. V.; Bezotosnyi, V. V.; Kharin, A. Y.; Alykova, A. F.; Karpov, N. V.; Popov, A. A.; Klimentov, S. M.; Zavestovskaya, I. N.; Kabashin, A. V.; Timoshenko, V. Y.; Попов, Антон Александрович; Климентов, Сергей Михайлович; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович; Тимошенко, Виктор Юрьевич
    © 2020 Elsevier B.V.Silicon (Si) nanoparticles (NPs) synthesized by methods of laser ablation in water are explored as sensitizers of photothermal therapy under a laser excitation in the window of relative tissue transparency. Based on theoretical calculations and experimental data, it is shown that the NPs can be heated up to temperatures above 42–50 °C by laser diode irradiation at 808 nm in continuous wave (CW) and quasi-continuous wave (QCW) regimes. Profiting from the laser-induced heating, a high efficiency Si-NPs as sensitizers of the hyperthermia of cells in Paramecium Caudatum model is demonstrated. The QCW regime is found to be more efficient, leading to complete cell destruction even under relatively mild laser irradiation conditions. The obtained data evidence a great potential in using laser-ablated Si-NPs as sensitizers of photohyperthermia in antibacterial or cancer therapy applications.
  • Публикация
    Открытый доступ
    Создание композитов Bi@SiO2 со структурой ядро@оболочка на основе лазерно-синтезированных наночастиц Bi
    (2023) Скрибицкая, А. В.; Короткова, Н. А.; Котельникова, П. А.; Тихоновский, Г. В.; Попов, А. А.; Климентов, С. М.; Завестовская, И. Н.; Кабашин, А. В.; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович; Климентов, Сергей Михайлович; Попов, Антон Александрович; Скрибицкая, Ангелина Вячеславовна; Тихоновский, Глеб Валерьевич
    Разработана методика получения нанокомпозитов по типу ядро@оболочка путём поверхностной модификации лазерно-синтезированных наночастиц (НЧ) висмута тетраэтоксисиланом с конечной структурной формулой Bi@SiO2. Показано, что покрытие НЧ Bi оболочкой из SiO2 приводит к образованию сферических наноформуляций с модой размерного распределения 250 – 300 нм. Разработанная методика, позволяющая создавать биосовместимые нанокомпозиты на основе Bi для сенсибилизации мультимодальной тераностики, является новой перспективной альтернативой традиционным методам.
  • Публикация
    Открытый доступ
    Laser-ablative synthesis of stable aqueous solutions of elemental bismuth nanoparticles for multimodal theranostic applications
    (2020) Bulmahn, J. C.; Kuzmin, A.; Tikhonowski, G.; Popov, A. A.; Klimentov, S. M.; Kabashin, A. V.; Prasad, P. N.; Тихоновский, Глеб Валерьевич; Попов, Антон Александрович; Климентов, Сергей Михайлович; Кабашин, Андрей Викторович
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Elemental bismuth (Bi) nanoparticles (NPs), with the high atomic density of the Bi nuclei, could serve as efficient targeted agents for cancer treatment, with applications such as contrast agents for computed tomography (CT) imaging, sensitizers for image-guided X-ray radiotherapy, and photothermal therapy. However, the synthesis of elemental Bi NPs suitable for biological applications is difficult using conventional chemical routes. Here, we explore the fabrication of ultrapure Bi-based nanomaterials by femtosecond laser ablation from a solid Bi target in ambient liquids and characterize them by a variety of techniques, including TEM, SEM, XRD, FTIR, Raman, and optical spectroscopy. We found that laser-ablative synthesis using an elemental Bi solid target leads to the formation of spherical Bi NPs having the mean size of 20–50 nm and a low size-dispersion. The NPs prepared in water experience a fast (within a few minutes) conversion into 400–500 nm flake-like nanosheets, composed of bismuth subcarbonates, (BiO)2 CO3 and (BiO)4 CO3 (OH)2, while the NPs prepared in acetone demonstrate high elemental stability. We introduce a procedure to obtain a stable aqueous solution of elemental Bi NPs suitable for biological applications, based on the coating of Bi NPs prepared in acetone with Pluronic® F68 and their subsequent transfer to water. We also show that the laser-synthesized elemental Bi NPs, due to their vanishing band gap, exhibit remarkable absorption in the infrared range, which can be used for the activation of photothermal therapy in the near IR-to-IR window with maximum optical transparency in biological media. Exempt of any toxic synthetic by-products, laser-ablated elemental Bi NPs present a novel appealing nanoplatform for combination image-guided photoradiotherapies.
  • Публикация
    Открытый доступ
    Laser-ablative synthesis of isotope-enriched samarium oxide nanoparticles for nuclear nanomedicine
    (2020) Duflot, V.; Popova-Kuznetsova, E.; Tikhonowski, G.; Popov, A. A.; Deyev, S.; Klimentov, S.; Zavestovskaya, I.; Prasad, P. N.; Kabashin, A. V.; Попова-Кузнецова, Елена Алефтиновна; Тихоновский, Глеб Валерьевич; Попов, Антон Александрович; Деев, Сергей Михайлович; Климентов, Сергей Михайлович; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Nuclear nanomedicine is an emerging field, which utilizes nanoformulations of nuclear agents to increase their local concentration at targeted sites for a more effective nuclear therapy at a considerably reduced radiation dosage. This field needs the development of methods for controlled fabrication of nuclear agents carrying nanoparticles with low polydispersity and with high colloidal stability in aqueous dispersions. In this paper, we apply methods of femtosecond (fs) laser ablation in deionized water to fabricate stable aqueous dispersion of152Sm-enriched samarium oxide nanoparticles (NPs), which can capture neutrons to become153Sm beta-emitters for nuclear therapy. We show that direct ablation of a152Sm-enriched samarium oxide target leads to widely size-and shape-dispersed populations of NPs with low colloidal stability. However, by applying a second fs laser fragmentation step to the dispersion of initially formed colloids, we achieve full homogenization of NPs size characteristics, while keeping the same composition. We also demonstrate the possibility for wide-range tuning of the mean size of Sm-based NPs by varying laser energy during the ablation or fragmentation step. The final product presents dispersed solutions of samarium oxide NPs with relatively narrow size distribution, having spherical shape, a controlled mean size between 7 and 70 nm and high colloidal stability. The formed NPs can also be of importance for catalytic and biomedical applications.
  • Публикация
    Открытый доступ
    Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics
    (2021) Zelepukin, I. V.; Popov, A. A.; Shipunova, V. O.; Tikhonowski, G. V.; Mirkasymov, A. B.; Popova-Kuznetsova, E. A.; Klimentov, S. M.; Kabashin, A. V.; Deyev, S. M.; Попов, Антон Александрович; Тихоновский, Глеб Валерьевич; Попова-Кузнецова, Елена Алефтиновна; Климентов, Сергей Михайлович; Кабашин, Андрей Викторович; Деев, Сергей Михайлович
    © 2020 Elsevier B.V.Having plasmonic absorption within the biological transparency window, titanium nitride (TiN) nanoparticles (NPs) can potentially outperform gold counterparts in phototheranostic applications, but characteristics of available TiN NPs are still far from required parameters. Recently emerged laser-ablative synthesis opens up opportunities to match these parameters as it makes possible the production of ultrapure low size-dispersed spherical TiN NPs, capable of generating a strong phototherapy effect under 750–800 nm excitation. This study presents the first assessment of toxicity, biodistribution and pharmacokinetics of laser-synthesized TiN NPs. Tests in vitro using 8 cell lines from different tissues evidenced safety of both as-synthesized and PEG-coated NPs (TiN-PEG NPs). After systemic administration in mice, they mainly accumulated in liver and spleen, but did not cause any sign of toxicity or organ damage up to concentration of 6 mg kg−1, which was confirmed by the invariability of blood biochemical parameters, weight and hemotoxicity examination. The NPs demonstrated efficient passive accumulation in EMT6/P mammary tumor, while concentration of TiN-PEG NPs was 2.2-fold higher due to “stealth” effect yielding 7-times longer circulation in blood. The obtained results evidence high safety of laser-synthesized TiN NPs for biological systems, which promises a major advancement of phototheranostic modalities on their basis.
  • Публикация
    Открытый доступ
    Impact of Plasmonic Nanoparticles on Poikilocytosis and Microrheological Properties of Erythrocytes
    (2023) Avsievich, T.; Zhu, R.; Popov, A. A.; Tikhonowski, G.; Klimentov, S.; Kabashin, A.; Попов, Антон Александрович; Тихоновский, Глеб Валерьевич; Климентов, Сергей Михайлович; Кабашин, Андрей Викторович
    Plasmonic nanoparticles (NP) possess great potential in photothermal therapy and diagnostics. However, novel NP require a detailed examination for potential toxicity and peculiarities of interaction with cells. Red blood cells (RBC) are important for NP distribution and the development of hybrid RBC-NP delivery systems. This research explored RBC alterations induced by noble (Au and Ag) and nitride-based (TiN and ZrN) laser-synthesized plasmonic NP. Optical tweezers and conventional microscopy modalities indicated the effects arising at non-hemolytic levels, such as RBC poikilocytosis, and alterations in RBC microrheological parameters, elasticity and intercellular interactions. Aggregation and deformability significantly decreased for echinocytes independently of NP type, while for intact RBC, all NP except Ag NP increased the interaction forces but had no effect on RBC deformability. RBC poikilocytosis promoted by NP at concentration 50 Ојg mL-1 was more pronounced for Au and Ag NP, compared to TiN and ZrN NP. Nitride-based NP demonstrated better biocompatibility towards RBC and higher photothermal efficiency than their noble metal counterparts.