Персона:
Тетерин, Пётр Евгеньевич

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Фамилия
Тетерин
Имя
Пётр Евгеньевич
Имя

Результаты поиска

Теперь показываю 1 - 10 из 29
  • Публикация
    Только метаданные
    Cathode boards defects detection method for sTGC chambers
    (2020) Smakhtin, V.; Teterin, P.; Тетерин, Пётр Евгеньевич
    © 2020 IOP Publishing Ltd and Sissa Medialab.Harsh radiation conditions, including the ones expected for the operation with High-Luminosity LHC, require detailed and careful quality control of any gas detector from the very beginning stage of assembly. The existing probe methods for cathode boards QC are able to find shorts to ground, shorts between pads, and breaks in the readout line at the initial stage of manufacturing. The cosmic test requires fully assembled detectors and reveals pads with absent or low amplitude analog signals associated with resistance in the readout trace line. In the current work, we propose the direct method of such a defect recognition for both bare cathode boards and fully assembled detectors and demonstrate the examples of a successful cure.
  • Публикация
    Только метаданные
    The X-ray scanning technique application for sTGC detectors quality control
    (2020) Teterin, P.; Bressler, S.; Doronin, S.; Fillippov, K.; Romaniouk, A.; Smirnov, S.; Тетерин, Пётр Евгеньевич; Доронин, Семен Александрович; Романюк, Анатолий Самсонович; Смирнов, Сергей Юрьевич
    The gas detectors, operated under harsh radiation conditions like the one foreseen at the High Luminosity LHC (HL-LHC), must fulfill a number of stringent quality control criteria. Based on high-voltage current measurements, the X-ray scanning technique has been developed for discovery of various production defects prior to the readout electronics installation. The later usually happens at the last stage of detector assembly. Thus, it allows testing the quality of the chambers, identifying defects and when possible fixing them already at early stage.
  • Публикация
    Только метаданные
    Sensitivity of the SHiP experiment to light dark matter
    (2021) Ahdida, C.; Akmete, A.; Albanese, R.; Alexandrov, A.; Atkin, E.; Dmitrenko, V.; Etenko, A.; Filippov, K.; Grachev, V.; Kudenko, Y.; Novikov, A.; Polukhina, N.; Samsonov, V.; Shustov, A.; Skorokhvatov, M.; Smirnov, S.; Teterin, P.; Ulin, S.; Uteshev, Z.; Vlasik, K.; Аткин, Эдуард Викторович; Дмитренко, Валерий Васильевич; Этенко, Александр Владимирович; Грачев, Виктор Михайлович; Куденко, Юрий Григорьевич; Полухина, Наталья Геннадьевна; Шустов, Александр Евгеньевич; Скорохватов, Михаил Дмитриевич; Смирнов, Сергей Юрьевич; Тетерин, Пётр Евгеньевич; Улин, Сергей Евгеньевич; Утешев, Зияэтдин Мухамедович; Власик, Константин Федорович
    © 2021, The Author(s).Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with αD = 0.1 and mA′ = 3mχ, we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 · 1020 protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic. [Figure not available: see fulltext.]
  • Публикация
    Только метаданные
    Chest x-ray image classification for viral pneumonia and Сovid-19 using neural networks
    (2021) Efremtsev, V. G.; Efremtsev, N. G.; Teterin, E. P.; Bazavluk, E. S.; Teterin, P. E.; Тетерин, Пётр Евгеньевич
    © 2021, Institution of Russian Academy of Sciences. All rights reserved.The use of neural networks to detect differences in radiographic images of patients with pneumonia and COVID-19 is demonstrated. For the optimal selection of resize and neural network architecture parameters, hyperparameters, and adaptive image brightness adjustment, precision, re-call, and f1-score metrics are used. The high values of these metrics of classification quality (> 0.91) strongly indicate a reliable difference between radiographic images of patients with pneumonia and patients with COVID-19, which opens up the possibility of creating a model with good predictive ability without involving ready-to-use complex models and without pre-training on third-party data, which is promising for the development of sensitive and reliable COVID-19 ex-press-diagnostic methods.
  • Публикация
    Только метаданные
    Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
    (2019) Ahdida, C.; Albanese, R. M.; Alexandrov, A.; Anokhina, A.; Atkin, E.; Dmitrenko, V.; Etenko, A.; Filippov, K.; Gavrilov, G.; Grachev, V.; Kudenko, Y.; Novikov, A.; Polukhina, N.; Samsonov, V.; Shustov, A.; Skorokhvatov, M.; Smirnov, S.; Teterin, P.; Ulin, S.; Uteshev, Z.; Vlasik, K.; Аткин, Эдуард Викторович; Дмитренко, Валерий Васильевич; Этенко, Александр Владимирович; Грачев, Виктор Михайлович; Куденко, Юрий Григорьевич; Полухина, Наталья Геннадьевна; Шустов, Александр Евгеньевич; Скорохватов, Михаил Дмитриевич; Смирнов, Сергей Юрьевич; Тетерин, Пётр Евгеньевич; Улин, Сергей Евгеньевич; Утешев, Зияэтдин Мухамедович; Власик, Константин Федорович
    © 2019 CERN.This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of (106). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution.
  • Публикация
    Только метаданные
    The SHiP experiment at the proposed CERN SPS Beam Dump Facility
    (2022) Ahdida, C.; Akmete, A.; Albanese, R.; Alt, J.; Atkin, E.; Dmitrenko, V.; Etenko, A.; Fillipov, K.; Grachev, V.; Kudenko, Y.; Polukhina, N.; Samsonov, V.; Shustov, A.; Skorokhvatov, M.; Smirnov, S.; Teterin, P.; Ulin, S.; Uteshev, Z.; Vlasik, K.; Аткин, Эдуард Викторович; Дмитренко, Валерий Васильевич; Этенко, Александр Владимирович; Грачев, Виктор Михайлович; Куденко, Юрий Григорьевич; Полухина, Наталья Геннадьевна; Шустов, Александр Евгеньевич; Скорохватов, Михаил Дмитриевич; Смирнов, Сергей Юрьевич; Тетерин, Пётр Евгеньевич; Улин, Сергей Евгеньевич; Утешев, Зияэтдин Мухамедович; Власик, Константин Федорович
    © 2022, The Author(s).The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400GeV protons, the experiment aims at profiting from the 4 × 10 19 protons per year that are currently unexploited at the SPS, over a period of 5–10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c2 up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.
  • Публикация
    Только метаданные
    Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment
    (2022) Ahdida, C.; Akmete, A.; Albanese, R.; Alt, J.; Atkin, E.; Dmitrenko, V.; Etenko, A.; Fillipov, K.; Grachev, V.; Kudenko, Y.; Polukhina, N.; Samsonov, V.; Shustov, A.; Skorokhvatov, M.; Smirnov, S.; Teterin, P.; Ulin, S.; Uteshev, Z.; Vlasik, K.; Аткин, Эдуард Викторович; Дмитренко, Валерий Васильевич; Этенко, Александр Владимирович; Грачев, Виктор Михайлович; Куденко, Юрий Григорьевич; Полухина, Наталья Геннадьевна; Шустов, Александр Евгеньевич; Скорохватов, Михаил Дмитриевич; Смирнов, Сергей Юрьевич; Тетерин, Пётр Евгеньевич; Улин, Сергей Евгеньевич; Утешев, Зияэтдин Мухамедович; Власик, Константин Федорович
    © 2022 CERN.In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved.
  • Публикация
    Только метаданные
    Development of the SPD Beam–Beam Counter Scintillation Detector Prototype with FERS-5200 Front-End Readout System
    (2024) Tishevsky, A. V.; Dubinin, F. A.; Nigmatkulov, G. A.; Teterin, P. E.; Zakharov, A. M.; Zhurkina, A. O.; Дубинин, Филипп Андреевич; Нигматкулов, Григорий Александрович; Тетерин, Пётр Евгеньевич; Захаров, Арсений Михайлович
  • Публикация
    Только метаданные
    Transition radiation detectors for hadron separation in the forward direction of LHC experiments
    (2023) Albrow, M.; Belyaev, N.; Doronin, S.; Ponomarenko, D.; Romaniouk, A.; Smirnov, S.; Smirnov, Y. u.; Teterin, P.; Vorobev, K.; Доронин, Семен Александрович; Романюк, Анатолий Самсонович; Смирнов, Сергей Юрьевич; Смирнов, Юрий Сергеевич; Тетерин, Пётр Евгеньевич; Воробьёв, Константин Александрович