Персона: Белов, Владимир Сергеевич
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Белов
Имя
Владимир Сергеевич
Имя
3 results
Результаты поиска
Теперь показываю 1 - 3 из 3
- ПубликацияТолько метаданныеTemperature oscillations during photoinduced heating of aqueous suspensions of silicon nanoparticles(2021) Belov, V. S.; Bobkov, E. A.; Oleschenko, V. A.; Kabashin, A. V.; Timoshenko, V. Yu.; Белов, Владимир Сергеевич; Бобков, Егор Андреевич; Кабашин, Андрей Викторович; Тимошенко, Виктор Юрьевич© 2021 Institute of Physics Publishing. All rights reserved.Temperature oscillations (pulsations) were detected in aqueous suspensions of silicon (Si) nanoparticles NPs under laser irradiation with highly absorbed light. The temperature pulsation frequency was found to depend on the NPs concentration in suspension and laser irradiation power. The observed phenomenon is assumed to be caused by the local overheating of Si NPs close to the boiling point of water, while the average heating of the surrounding liquid was insignificant. The observed phenomenon is discussed in view of potential applications in local photo-induced hyperthermia of cancer.
- ПубликацияТолько метаданныеBrain-computer interface technologies for monitoring and control of bionic systems(2021) Berestov, R. M.; Nevedin, A. V.; Bobkov, E. A.; Belov, V. S.; Бобков, Егор Андреевич; Белов, Владимир Сергеевич© 2021 Institute of Physics Publishing. All rights reserved.At the moment, neurocomputer interfaces (BCI) make it possible to implement on their basis devices for diagnosing a physical condition, implementing control systems for bionic prostheses, information input means such as neuro chat and character set systems based on brain potentials. At the moment, the main technology for obtaining brain activity for neurointerfaces is the electroencephalogram (EEG). There are promising technologies that will make it possible to achieve new results in the field of neurointerfaces. These technologies are functional near infrared spectroscopy (fNIRS) and magnetoencephalography (MEG).
- ПубликацияОткрытый доступLaser-Ablative Synthesis of Silicon–Iron Composite Nanoparticles for Theranostic Applications(2023) Bubnov, A. A.; Belov, V. S.; Kargina, Yu. V.; Tikhonowski, G. V.; Popov, A. A.; Kharin, A. Yu.; Shestakov, M. V.; Klimentov, S. M.; Timoshenko, V. Y.; Белов, Владимир Сергеевич; Тихоновский, Глеб Валерьевич; Попов, Антон Александрович; Климентов, Сергей Михайлович; Тимошенко, Виктор ЮрьевичThe combination of photothermal and magnetic functionalities in one biocompatible nanoformulation forms an attractive basis for developing multifunctional agents for biomedical theranostics. Here, we report the fabrication of silicon-iron (Si-Fe) composite nanoparticles (NPs) for theranostic applications by using a method of femtosecond laser ablation in acetone from a mixed target combining silicon and iron. The NPs were then transferred to water for subsequent biological use. From structural analyses, it was shown that the formed Si-Fe NPs have a spherical shape and sizes ranging from 5 to 150 nm, with the presence of two characteristic maxima around 20 nm and 90 nm in the size distribution. They are mostly composed of silicon with the presence of a significant iron silicide content and iron oxide inclusions. Our studies also show that the NPs exhibit magnetic properties due to the presence of iron ions in their composition, which makes the formation of contrast in magnetic resonance imaging (MRI) possible, as it is verified by magnetic resonance relaxometry at the proton resonance frequency. In addition, the Si-Fe NPs are characterized by strong optical absorption in the window of relative transparency of bio-tissue (650-950 nm). Benefiting from such absorption, the Si-Fe NPs provide strong photoheating in their aqueous suspensions under continuous wave laser excitation at 808 nm. The NP-induced photoheating is described by a photothermal conversion efficiency of 33-42%, which is approximately 3.0-3.3 times larger than that for pure laser-synthesized Si NPs, and it is explained by the presence of iron silicide in the NP composition. Combining the strong photothermal effect and MRI functionality, the synthesized Si-Fe NPs promise a major advancement of modalities for cancer theranostics, including MRI-guided photothermal therapy and surgery.