Персона: Плеханов, Андрей Александрович
Email Address
Birth Date
Научные группы
Организационные подразделения
Статус
Фамилия
Имя
Имя
Результаты поиска
Spectral identification of traces of explosives in reflected terahertz radiation
2019, Akmalov, A. E., Aksenov, E. A., Kotkovskii, G. E., Kozlovskii, K. I., Maksimov, E. M., Plekhanov, A. A., Chistyakov, A. A., Акмалов, Артём Эдуардович, Котковский, Геннадий Евгеньевич, Козловский, Константин Иванович, Максимов, Евгений Михайлович, Плеханов, Андрей Александрович, Чистяков, Александр Александрович
© 2019 SPIE.The work is devoted to the influence of scattering of terahertz (THz) radiation by hexogen particles (RDX) in powdery samples on their transmission and reflection spectra. A terahertz radio-vision installation with spectral resolution was used to determine experimentally THz spectra of RDX. For samples with small RDX particles (the typical particle size is 100 μm), characteristic peaks at 0.8 THz and 1.06 THz are observed in absorption spectra despite scattering, that can be used to identify this substance. For large hexogen particles (a typical particle size is 450 μm), experiments and numerical simulation showed that even the most intense peak at 0.8 THz is not observed in absorption spectra, and the spectra are mainly due to the scattering effect and its depending on the wavelength of radiation. The reflection spectra of RDX layers (particle size is about 100 μm) qualitatively differ from the reflection spectra of RDX crystals and are formed as a result of absorption during propagation of THz radiation in the particle layer. Thus, the substance can be identified by absorption spectra in a reflection scheme.
THz imaging with spectral resolution for identification of traces of explosives
2020, Akmalov, A. E., Kotkovskii, G. E., Kozlovskii, K. I., Maksimov, E. M., Plekhanov, A. A., Chistyakov, A. A., Акмалов, Артём Эдуардович, Котковский, Геннадий Евгеньевич, Козловский, Константин Иванович, Максимов, Евгений Михайлович, Плеханов, Андрей Александрович, Чистяков, Александр Александрович
© 2020 SPIEThe presence of characteristic peaks in the terahertz (THz) absorption spectra of many organic substances and the active development of the technology for manufacturing video cameras based on microbolometric matrices create an increased interest in methods for identifying explosive compounds using THz imaging with simultaneous recording of spectral information. The results of relevant studies can be used in the development of security systems. THz images (taking into account the spectral information in each pixel) were obtained in this work by passing radiation through a sample based on hexogen (RDX) microcrystals deposited on a polyethylene (PE) film. A photoconductive antenna was used as a source of broadband radiation in the range from 0.5 THz to 2.5 THz. Spectral resolution was provided using a Fourier spectrometer based on a Michelson interferometer. The images were recorded using a THz video camera based on a microbolometric matrix. The possibility of identifying RDX microcrystals using color visualization of spectral information in the frequency range of one of the characteristic RDX peaks (~0.8 THz) has been demonstrated.
The acceleration of laser plasma in a strong non-stationary magnetic field
2019, Shikanov, A., Vovchenko, E., Kozlovskii, K., Isaev, A., Plekhanov, A., Lisovskii, M., Шиканов, Александр Евгеньевич, Вовченко, Евгений Дмитриевич, Козловский, Константин Иванович, Плеханов, Андрей Александрович
© Published under licence by IOP Publishing Ltd.Based on experimental and computer simulation the acceleration of deuterons from laser plasma in a strong non-stationary magnetic field was studied. The possibility of reaching an energy of ∼100 keV, corresponding to the effective course of the nuclear reactions D (d, n) 3He and T (d, n) 4He, was demonstrated. YAG: Nd3+ laser (W ≤ 0.85 J, τ ≈ 10 ns) was used in the experiment with focusing laser radiation on a deuterated polyethylene target. The high voltage pulse generator with a conical spiral coil was used to generate a high-speed magnetic field (2•107 T/s). A mathematical model of the process is proposed. According to this model, the acceleration of a laser plasma is analyzed by means of a computer. The algorithm is based on a numerical solution of the system of Newton-Lorentz equations.
Collective Acceleration of Ions in a Pulsed Magnetic Field of a Conical Spiral
2019, Vovchenko, E. D., Kozlovskij, K. I., Shikanov, A. E., Karimov, A. R., Isaev, A. A., Plekhanov, A. A., Deryabochkin, O. V., Вовченко, Евгений Дмитриевич, Козловский, Константин Иванович, Шиканов, Александр Евгеньевич, Каримов, Александр Рашатович, Плеханов, Андрей Александрович, Дерябочкин, Олег Владимирович
© 2019, Pleiades Publishing, Ltd.The collective acceleration of laser plasma ions in a magnetic field generated by a powerful fast-growing current pulse in a low-inductive conical spiral is studied. The velocity of ions for a number of elements which significantly differ in atomic weight are obtained on the basis of collector measurements. The maximum velocity of both light (lithium) and heavy (lead) ions exceed the value of 108 cm/s; for ions of lead, the corresponding energy amounts to a value of ∼1 MeV. A mathematical model of ion acceleration is proposed and simulation results are compared with the experiment.