Персона: Савельева, Татьяна Александровна
Загружается...
Email Address
Birth Date
Научные группы
Научная группа
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Савельева
Имя
Татьяна Александровна
Имя
2 results
Результаты поиска
Теперь показываю 1 - 2 из 2
- ПубликацияТолько метаданныеEvaluation of tissue blood supply during esophagectomy using fluorescent diagnostics and diffuse scattering spectroscopy in visible region(2024) Krivetskaya, A. A.; Kustov, D. M.; Savelieva, T. A.; Loschenov, V. B.; Кривецкая, Анна Александровна; Савельева, Татьяна Александровна; Лощенов, Виктор БорисовичThe success of the surgical treatment of a tumor or obstruction of the esophagus with subsequent anastomosis application depends on the level of blood supply to the stitched tissues. Intraoperative assessment of blood flow is widely used in medicine and can be used as a diagnostic method that affects the outcome of surgery and reduces the frequency of postoperative complications for the patient. In this work, the assessment of blood supply during esophageal resection operations was carried out using two techniques sequentially: fluorescent diagnostics with indocyanine green and measurement of hemoglobin oxygen saturation by diffuse scattering spectroscopy in the visible wavelength range. The first method was used to assess the integrity of the vascular network structure in the area of anastomosis and blood flow through the sutured tissues, the second one – for local assessment of hemoglobin oxygen saturation in the investigated area. Conducted clinical study involved the participation of nine patients with malignant neoplasms (six cases) or esophageal obstruction (three cases). The presence of postoperative complications was compared with the measurement results. Anastomosis failure was observed in only one patient. According to the results of the study, with the use of the investigated method of assessing blood supply, there is a tendency towards a decrease in the frequency of anastomosis leaks (11.1 % compared with 21.4 %). Therefore, fluorescent diagnostics with indocyanine green and measurement of hemoglobin oxygen saturation using diffuse scattering spectroscopy were affirmed as methods that allow increasing the safety of surgical procedures by assessing the risk of postoperative complications, including anastomosis failures.
- ПубликацияОткрытый доступOptical Differentiation of Brain Tumors Based on Raman Spectroscopy and Cluster Analysis Methods(2023) Ospanov, A.; Romanishkin, I.; Savelieva, T.; Kosyrkova, A.; Loschenov, V.; Савельева, Татьяна Александровна; Лощенов, Виктор Борисович; Оспанов, АнуарIn the present study, various combinations of dimensionality reduction methods with data clustering methods for the analysis of biopsy samples of intracranial tumors were investigated. Fresh biopsies of intracranial tumors were studied in the Laboratory of Neurosurgical Anatomy and Preservation of Biological Materials of N.N. Burdenko Neurosurgery Medical Center no later than 4 h after surgery. The spectra of Protoporphyrin IX (Pp IX) fluorescence, diffuse reflectance (DR) and Raman scattering (RS) of biopsy samples were recorded. Diffuse reflectance studies were carried out using a white light source in the visible region. Raman scattering spectra were obtained using a 785 nm laser. Patients diagnosed with meningioma, glioblastoma, oligodendroglioma, and astrocytoma were studied. We used the cluster analysis method to detect natural clusters in the data sample presented in the feature space formed based on the spectrum analysis. For data analysis, four clustering algorithms with eight dimensionality reduction algorithms were considered.