Персона:
Кочетков, Юрий Владимирович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Кочетков
Имя
Юрий Владимирович
Имя

Результаты поиска

Теперь показываю 1 - 10 из 15
  • Публикация
    Только метаданные
    Investigation of spontaneous magnetic fields, electron and ion emission in laser-produced plasma experiments at PALS
    (2019) Pisarczyk, T.; Batani, D.; Dudzak, R.; Zaras-Szydlowska, A.; Gus'kov, S. Yu.; Korneev, P. h.; Kochetkov, J.; Martynenko, A. S.; Корнеев, Филипп Александрович; Кочетков, Юрий Владимирович
  • Публикация
    Только метаданные
    Complex interferometry of magnetized plasma: Accuracy and limitations
    (2021) Pisarczyk, T.; Kalal, M.; Chodukowski, T.; Zaras-Szydlowska, A.; Kochetkov, I.; Korneev, P.; Кочетков, Юрий Владимирович; Корнеев, Филипп Александрович
    © 2021 Author(s).Expanding laser plasmas, produced by high energy laser radiation, possess both high thermal and magnetic field energy densities. Characterization of such plasma is challenging but may provide essential information needed for understanding its physical behavior. Among the standard experimental techniques used for plasma diagnostics, conventional interferometry is one of the most convenient, informative, and accurate. Attempts to extract more information from each laser shot on large facilities have led to development of complex interferometry, which allows us to reconstruct both plasma electron density and magnetic field distributions from a single data object. However, such a benefit requires more accurate processing, critically important in some situations. This work focuses on quasi-axisymmetric interaction geometry. Starting from basic principles, we present a general analysis, consider main error sources, and obtain plasma density and magnetic field distributions with their derived error bars. A regularization procedure, significantly decreasing an error near the plasma symmetry axis, is proposed and analyzed in detail. With use of synthetic datasets, the presented analysis is generally universal for quasi-axisymmetric plasmas.
  • Публикация
    Открытый доступ
    On the proton radiography of magnetic fields in targets irradiated by intense picosecond laser pulses
    (2020) Ehret, M.; Santos, J. J.; Zielbauer, B.; Abe, Y.; Bukharskii, N. D.; Kochetkov, Y. V.; Gubskiy, K. L.; Kuznetsov, A. P.; Korneev, P. A.; Бухарский, Николай Дмитриевич; Кочетков, Юрий Владимирович; Губский, Константин Леонидович; Кузнецов, Андрей Петрович; Корнеев, Филипп Александрович
    © Published under licence by IOP Publishing Ltd.Proton radiography is a common diagnostic technique in laser-driven magnetic field generation studies. It is based on measuring proton beam deflection in electromagnetic fields induced around the target with the help of radiochromic film stacks. Unraveling information recorded in experimental radiographs and extracting the field profiles is not always a straightforward task. In this paper, some aspects of data analysis by reproducing experimental radiographs in numerical simulations are described. The approach allows determining the field strength and structure in the target area for various target geometries.
  • Публикация
    Только метаданные
    Hot electron retention in laser plasma created under terawatt subnanosecond irradiation of Cu targets
    (2020) Pisarczyk, T.; Kalal, M.; Gus'kov, S. Y.; Batani, D.; Kochetkov, I.; Korneev, P.; Кочетков, Юрий Владимирович; Корнеев, Филипп Александрович
    Laser plasma created by intense light interaction with matter plays an important role in high-energy density fundamental studies and many prospective applications. Terawatt laser-produced plasma related to the low collisional and relativistic domain may form supersonic flows and is prone to the generation of strong spontaneous magnetic fields. The comprehensive experimental study presented in this work provides a reference point for the theoretical description of laser-plasma interaction, focusing on the hot electron generation. It experimentally quantifies the phenomenon of hot electron retention, which serves as a boundary condition for most plasma expansion models. Hot electrons, being responsible for nonlocal thermal and electric conductivities, are important for a large variety of processes in such plasmas. The multiple-frame complex-interferometric data providing information on time resolved spontaneous magnetic fields and electron density distribution, complemented by particle spectra and x-ray measurements, were obtained under irradiation of the planar massive Cu and plastic-coated targets by the iodine laser pulse with an intensity of above 10(16)W cm(-2). The data shows that the hot electron emission from the interaction region outside the target is strongly suppressed, while the electron flow inside the target,i.e.in the direction of the incident laser beam, is a dominant process and contains almost the whole hot electron population. The obtained quantitative characterization of this phenomenon is of primary importance for plasma applications spanning from ICF to laser-driven discharge magnetic field generators.
  • Публикация
    Открытый доступ
    Implementation of amplitude-phase analysis of complex interferograms for measurement of spontaneous magnetic fields in laser generated plasma
    (2020) Zaras-Szydlowska, A.; Pisarczyk, T.; Chodukowski, T.; Rusiniak, Z.; Kochetkov, I.; Кочетков, Юрий Владимирович
    © 2020 Author(s).Generation of spontaneous magnetic fields (SMFs) is one of the most interesting phenomena accompanying an intense laser-matter interaction. One method of credible SMFs measurements is based on the magneto-optical Faraday effect, which requires simultaneous measurements of an angle of polarization plane rotation of a probe wave and plasma electron density. In classical polaro-interferometry, these values are provided independently by polarimetric and interferometric images. Complex interferometry is an innovative approach in SMF measurement, obtaining information on SMF directly from a phase-amplitude analysis of an image called a complex interferogram. Although the theoretical basis of complex interferometry has been well known for many years, this approach has not been effectively employed in laser plasma research until recently; this approach has been successfully implemented in SMF measurement at the Prague Asterix Laser System (PALS). In this paper, proprietary construction solutions of polaro-interferometers are presented; they allow us to register high-quality complex interferograms in practical experiments, which undergo quantitative analysis (with an original software) to obtain information on the electron density and SMFs distributions in an examined plasma. The theoretical foundations of polaro-interferometric measurement, in particular, complex-interferometry, are presented. The main part of the paper details the methodology of the amplitude-phase analysis of complex interferograms. This includes software testing and examples of the electron density and SMF distribution of a laser ablative plasma generated by irradiating Cu thick planar targets with an iodine PALS laser at an intensity above about 1016 W/cm2.
  • Публикация
    Только метаданные
    Terahertz annular antenna driven with a short intense laser pulse
    (2022) Bukharskii, N.; Kochetkov, I.; Korneev, P.; Бухарский, Николай Дмитриевич; Кочетков, Юрий Владимирович; Корнеев, Филипп Александрович
    © 2022 Author(s).Generation of terahertz radiation by an oscillating discharge, excited by short laser pulses, may be controlled by geometry of the irradiated target. In this work, an annular target with a thin slit is considered as an efficient emitter of secondary radiation when driven by a short intense laser pulse. Under irradiation, a slit works as a diode, which is quickly filled by dense plasmas, closing the circuit for a traveling discharge pulse. Such a diode defines the discharge pulse propagation direction in a closed contour, enabling its multiple passes along the coil. The obtained oscillating charge efficiently generates multi-period quasi-monochromatic terahertz waves with a maximum along the coil axis and controllable characteristics.
  • Публикация
    Только метаданные
    Electron accelerator driven by 1TW femtosecond laser pulses: Targetry, principles and prospects
    (2024) Ivanov, K. A.; Tsymbalov, I. N.; Gorlova, D. A.; Kochetkov, Yu. V.; Кочетков, Юрий Владимирович
  • Публикация
    Только метаданные
    Multi MeV high charge electron beam source utilizing 1 TW laser and shock wave in gas jet target
    (2022) Ivanov, K. A.; Tsymbalov, I. N.; Gorlova, D. A.; Shulyapov, S. A.; Tsygvintsev, I. P.; Kochetkov, Yu. V.; Volkov, R. V.; Savel'ev, A. B.; Кочетков, Юрий Владимирович
    The high charge electron beam is generated at interaction of 1 TW laser pulse with gas target tailored by nanosecond prepulse forming a shock wave. Propagation of intense femtosecond pulse through complex plasma slab accelerates electrons up to 10 MeV. The debris free target has potential to kHz laser application and electrons energy enhancement using more powerful femtosecond laser pulse. © 2022 IEEE.
  • Публикация
    Только метаданные
    Kilotesla plasmoid formation by a trapped relativistic laser beam
    (2022) Ehret, M.; Kochetkov, Y.; Bukharskii, N.; Stepanishchev, V.; Korneev, P.; Кочетков, Юрий Владимирович; Бухарский, Николай Дмитриевич; Корнеев, Филипп Александрович
    A strong quasistationary magnetic field is generated in hollow targets with curved internal surface under the action of a relativistically intense picosecond laser pulse. Experimental data evidence the formation of quasistationary strongly magnetized plasma structures decaying on a hundred picoseconds timescale, with the magnetic field strength of the kilotesla scale. Numerical simulations unravel the importance of transient processes during the magnetic field generation and suggest the existence of fast and slow regimes of plasmoid evolution depending on the interaction parameters. The proposed setup is suited for perspective highly magnetized plasma application and fundamental studies. © 2022 American Physical Society.