Персона: Кореневский, Егор Леонидович
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Фамилия
Кореневский
Имя
Егор Леонидович
Имя
3 results
Результаты поиска
Теперь показываю 1 - 3 из 3
- ПубликацияТолько метаданныеFeatures of creating wear-resistant anti-corrosion coatings with a barrier layer on fragments of fuel claddings from E110 o.ch.(2020) Novikov, V. V.; Kuznetsov, V. I.; Fedotov, P. V.; Krivobokov, V. P.; Kalin, B. A.; Yashin, A. S.; Dzhumaev, P. S.; Safonov, D. A.; Korenevsky, E. L.; Fedorov, D. A.; Uglov, V. V.; Яшин, Александр Сергеевич; Джумаев, Павел Сергеевич; Кореневский, Егор Леонидович; Углов, Владимир Васильевич© Published under licence by IOP Publishing Ltd.Results of the development of protective chromium-containing coatings based on the FeCrNi and CrNi systems for fuel claddings within framework of the accident tolerant fuel (ATF) are presented in this paper. Coatings were deposited by the outer surface of cladding tubes fragments from E110 o.ch. alloy (sponge-based Zr-1%Nb) up to 500 mm length by complex ion-plasma treatment on ILUR-03 and KVK-10 installations. The results of the control tests carried out in high-temperature steam at the GAZPAR bench at 1200 °C up to 400 s showed that Cr-FeCrNi-Cr and Cr-CrNi-Cr coatings reduce total oxygen penetration into the alloy from 144 to 98 and 55 μm, respectively and Cr-CrNi-Cr coatings with a Mo barrier layer completely block the diffusion of oxygen into the material.
- ПубликацияТолько метаданныеCorrosion of EP823 Steel Cladding Under Heavy Liquid-Metal-Coolant Reactor Conditions: A Review(2024) Isayev, R.; Pukhareva, N.; Malinovskiy, E.; Korenevski, E.; Dzhumaev, P.; Исаев, Рафаэл Шахбаз Оглы; Пухарева, Наталья Алексеевна; Малиновский, Евгений Дмитриевич; Кореневский, Егор Леонидович; Джумаев, Павел Сергеевич
- ПубликацияТолько метаданныеHIGH-TEMPERATURE OXIDATION OF ZIRCONIUM ALLOYS WITH MAGNETRON SPUTTERED CHROMIUM COATINGS(2022) Isayev, R. Sh.; Safonov, D. A.; Dzhumaev, P. S.; Korenevskiy, E. L.; Исаев, Рафаэл Шахбаз Оглы; Джумаев, Павел Сергеевич; Кореневский, Егор ЛеонидовичLoss-of-coolant accidents (LOCAs) often lead to dire consequences. That’s why the global community are actively engaged in research aimed at creating accident tolerant fuels. One of the areas of such research is preserving zirconium alloys as the material for fuel-element claddings by creating corrosion-resistant coatings that would be in contact with the coolant. Chromium could be a prom-ising material to be used in such protective coatings as chromium oxide (Cr2O3) serves as an effective barrier for oxygen both in normal operation and in case of LOCA. Chromium coating hinders oxygen diffusion into the metal substrate and thus prevents embrittlement and failure of the fuel-element cladding. This paper describes the results of research studies that have been carried out in recent years and that look at the resistance of magnetron sputtered chromium coatings to high-temperature oxidation in water vapour up to 1,500o C. The paper demonstrates advantages and drawbacks of chromium coatings in high-temperature oxidation conditions. The focus is on understanding how regimes of magnetron sputtering influence the resistance of chromium coatings to high-temperature oxidation and how the structure and phase state of chromium coatings are related to their properties. The authors describe the optimal regimes of magnetron sputtering for obtaining dense coatings and examine the effect of the substrate temperature and the bias voltage on the structure and density of resulting coatings. High Power Impulse Magnetron Sputtering (HiPIMS) serves as an effective technique that helps enhance the density of coatings. The conclusion drawn is that in order to broaden the temperature range in which chromium coatings can effectively protect zirconium alloys from failure up to 1500o C, there should be a diffusion barrier between the surface of the fuel-element cladding and the chromium coating. The authors would like to thank B. A. Kalin, supervisor of this project, who had passed away before this publication was made. The staff of the Laboratory of Ion-Plasma and Ion-Beam Machining of Materials, a part of Department No. 9 at the National Research Nuclear University MEPhI, devote this paper to his memory. © 2022, Ore and Metals Publishing house. All rights reserved.