Персона:
Новожилов, Александр Евгеньевич

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт общей профессиональной подготовки (ИОПП)
Миссией Института является: фундаментальная базовая подготовка студентов, необходимая для получения качественного образования на уровне требований международных стандартов; удовлетворение потребностей обучающихся в интеллектуальном, культурном, нравственном развитии и приобретении ими профессиональных знаний; формирование у студентов мотивации и умения учиться; профессиональная ориентация школьников и студентов в избранной области знаний, формирование способностей и навыков профессионального самоопределения и профессионального саморазвития. Основными целями и задачами Института являются: обеспечение высококачественной (фундаментальной) базовой подготовки студентов бакалавриата и специалитета; поддержка и развитие у студентов стремления к осознанному продолжению обучения в институтах (САЕ и др.) и на факультетах Университета; обеспечение преемственности образовательных программ общего среднего и высшего образования; обеспечение высокого качества довузовской подготовки учащихся Предуниверситария и школ-партнеров НИЯУ МИФИ за счет интеграции основного и дополнительного образования; учебно-методическое руководство общеобразовательными кафедрами Института, осуществляющими подготовку бакалавров и специалистов по социо-гуманитарным, общепрофессиональным и естественнонаучным дисциплинам, обеспечение единства требований к базовой подготовке студентов в рамках крупных научно-образовательных направлений (областей знаний).
Статус
Фамилия
Новожилов
Имя
Александр Евгеньевич
Имя

Результаты поиска

Теперь показываю 1 - 4 из 4
  • Публикация
    Только метаданные
    THE CONCEPTUAL DESIGN OF THE 7.5 MeV/U LIGHT ION INJECTOR
    (2021) Zavyalov, N. V.; Smetanin, M. L.; Telnov, A. V.; Polozov, S. M.; Aksentyev, A. E.; Bulgacheva, M. M.; Deryabochkin, O. A.; Dmitriev, M. S.; Dmitriyeva, V. V.; Dyakonov, M. V.; Dyubkov, V. S.; Gerasimenko, A. V.; Gorchakov, A. A.; Gusarova, M. A.; Guzov, M. A.; Indiushnii, E. N.; Ivanov, O. A.; Korshunov, A. M.; Kozlovskiy, K. I.; Krasnov, A. S.; Lalayan, M. V.; Lozeev, Y. Y.; Lozeeva, T. A.; Makarov, A. I.; Matsievskiy, S. V.; Melekhov, A. P.; Murygin, O. V.; Nemchenko, R. E.; Novikov, G.; Novozhilov, A. E.; Panishev, A. S.; Pashentsev, V. N.; Plotnikov, E. A.; Ponomarenko, A. G.; Prokopenko, A. V.; Rashchikov, V. I.; Samoshin, A. V.; Savchik, A. A.; Shatokhin, V. L.; Shikanov, A. E.; Smirnov, K. D.; Tsarev, G. A.; Tumanov, S. A.; Yurin, I. A.; Zhigailova, M. I.; Полозов, Сергей Маркович; Аксентьев, Александр Евгеньевич; Булгачева, Маргарита Максатовна; Дерябочкин, Олег Владимирович; Дмитриев, Максим Сергеевич; Дмитриева, Валентина Викторовна; Дьяконов, Максим Валентинович; Дюбков, Вячеслав Сергеевич; Гусарова, Мария Александровна; Гузов, Максим Алексеевич; Индюшный, Евгений Николаевич; Иванов, Олег Александрович; Козловский, Константин Иванович; Краснов, Артем Сергеевич; Лалаян, Михаил Владимирович; Лозеев, Юрий Юрьевич; Лозеева, Татьяна Андреевна; Мациевский, Сергей Викторович; Мелехов, Андрей Петрович; Мурыгин, Олег Викторович; Новиков, Григорий Григорьевич; Новожилов, Александр Евгеньевич; Панишев, Александр Сергеевич; Пашенцев, Владимир Николаевич; Плотников, Евгений Александрович; Пономаренко, Алексей Гаврилович; Прокопенко, Александр Валерьевич; Ращиков, Владимир Иванович; Самошин, Александр Вячеславович; Савчик, Алексей Александрович; Шатохин, Вадим Леонидович; Шиканов, Александр Евгеньевич; Туманов, Сергей Алексеевич; Юрин, Илья Андреевич; Жигайлова, Марина Ивановна
    © 27th Russian Particle Accelerator Conference, RuPAC 2021. All rights reserved.The new linac for light ion beam injection is under development at MEPhI. Such linac was proposed for acceleration of 7.5 MeV/nucleon ion beam with A/Z=1-3.5 and current up to 5 mA for proton and 0.4 pmA for light ions. The linac general layout will include two types of ion sources: ECR ion source for proton and He ions and laser ion source for ions form Li to O. Following the LEBT ions will be bunched and accelerated to the final energy using RFQ section and 14 IH-cavities. These IH-cavities will be identical (divided into two groups) and independently phased. All cavities will operate on 81.25 MHz. Results of the beam dynamics simulations and the cavities design will be presented in the report.
  • Публикация
    Только метаданные
    High frequency power supply to improve operation stability of linear electron accelerator
    (2021) Shilov, V. K.; Filatov, A. N.; Novozhilov, A. E.; Шилов, Владимир Кузьмич; Филатов, Александр Николаевич; Новожилов, Александр Евгеньевич
    The use of linear electron accelerators in medicine and industry is explained by the simplicity of the input and output of accelerated electrons and adjusting the energy and dose rate, as well as the high dose rate of bremsstrahlung. The purpose of this work is to increase the stability of their work. A standing wave accelerator containing a high-frequency generator, a phase shifter, a waveguide bridge, a high-frequency load, and an accelerating system of two accelerating sections is equipped with two waveguide tees. Their inputs are connected to the output arms of the waveguide bridge, and the first and second output arms of each tee are connected to the first and last accelerating cells of each section, respectively. In this system, due to the introduction of several elements that do not require large costs for manufacturing and tuning, a significantly greater frequency separation of the operating mode of oscillations from neighboring ones is ensured, or even a single-frequency excitation mode is implemented, which makes it possible to significantly increase the stability of the accelerator operation. This technique can be used to increase the stability of operation in the design and calculation of linear accelerators of electrons with a standing wave.
  • Публикация
    Только метаданные
    The effect of the transient process on the output properties of the electron beam of a linear accelerator with a standing wave
    (2020) Filatov, A. N.; Shilov, V. K.; Novozhilov, A. E.; Филатов, Александр Николаевич; Шилов, Владимир Кузьмич; Новожилов, Александр Евгеньевич
    © 2006-2020 Asian Research Publishing Network (ARPN).The process of loading high-frequency energy into the resonator accelerating sections of a linear electron accelerator occurs with a significant time constant since the accelerating sections have a high Q factor. At the beginning of a high-frequency accelerating pulse, an accelerating electron beam lacks energy and a significant average energy bundle scatter occurs at the output of the accelerator. If one delays the electron injection pulse relative to the high-frequency accelerating pulse, then the spectrum of the electron beam can be improved and the average energy bundle scatter at the accelerator output can be reduced. Such experiments are already used for ion accelerators. This article investigates the aforementioned technique for improving the spectral properties of a beam in a two-section linear electron accelerator with a standing wave. For this, a high-frequency power system with adjustment of the high-frequency energy level in the accelerating sections is used, which can completely decouple the high-frequency generator from high Q load. Such a system can significantly improve the output properties of an electron beam. The accelerator under consideration consists of two high-Q accelerating sections based on a biperiodic decelerating structure, which are powered from a magnetron via a 3-dB bridge. The article presents the results of analytical and experimental studies.
  • Публикация
    Только метаданные
    Multibeam biperiodic accelerating systems
    (2020) Shilov, V. K.; Filatov, A. N.; Novozhilov, A. E.; Шилов, Владимир Кузьмич; Филатов, Александр Николаевич; Новожилов, Александр Евгеньевич
    © 2020, World Academy of Research in Science and Engineering. All rights reserved.This article discusses the issue of increase in intensity of electron flow in small-size accelerator for efficient application in industry, medicine, and other fields of science and engineering, where the sizes of unit are important. A possible approach to solve this problem is to combine acceleration and focusing of flow of charged particles in a single structure. Comparison of various types of accelerating structures demonstrates that at injection voltages not higher than 100 kV, the most preferred are biperiodic decelerating structures. Since the increase in intensity of beams of accelerated particles only by improvement of acceleration and focusing has certain limits, then it is proposed to improve technical and economic specifications of accelerator by conversion from regular accelerating system to multichannel design. Transportation and focusing of beams in multibeam structures, which significantly improve acceleration efficiency without noticeable increase in transversal sizes of radiating unit, seems to be possible only by means of high frequency focusing.