Персона:
Романенко, Владислав Игоревич

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Фамилия
Романенко
Имя
Владислав Игоревич
Имя

Результаты поиска

Теперь показываю 1 - 7 из 7
  • Публикация
    Только метаданные
    SKETCH-N/ATHLET steady-state and dynamic coupling scheme verification on Kalinin-3 benchmark results
    (2020) Zimin, V. ; Nikonov, S. ; Perin, Ya. ; Henry, R. ; Velkov, K. ; Романенко, Владислав Игоревич; Тихомиров, Георгий Валентинович; Tikhomirov, G. V.; Romanenko,V. I.; Зимин, Вячеслав Геннадьевич
    The paper describes the multi-physics coupling scheme between the SKETCH-N nodal neutronics code and the best-estimate thermohydraulic code ATHLET v3.2. Some first results are discussed. Various possible options of coupling have been considered. A scheme is selected and applied for data exchange between the codes based on MPI library. The verification and validation were performed using the transient of the Kalinin-3 international Benchmark. The simulation results show good agreement with experimental data and calculations performed by the participants of the benchmark. Parallel to the coupling scheme development, a visualization system to process the results is being created. The steady-state analysis is carried out using both simple and complex thermohydraulic models. The calculations of the transient \Switch off of one MCP (Main Coolant Pump) at nominal power" is performed applying a more elaborate thermohydraulic model taking into account inter- channel mass transfer.
  • Публикация
    Открытый доступ
    Development of virtual analogues of nuclear facilities in virtual reality
    (2020) Dashanova, E. A.; Zadeba, E. A.; Kiryukhin, P. K.; Pugachev, P. A.; Romanenko, V. I.; Tikhomirov, G. V.; Khomyakov, D. A.; Shcherbakov, A. A.; Yushin, I. M.; Дашанова, Екатерина Александровна; Задеба, Егор Александрович; Кирюхин, Павел Константинович; Пугачев, Павел Александрович; Романенко, Владислав Игоревич; Тихомиров, Георгий Валентинович; Хомяков, Дмитрий Андреевич; Щербаков, Александр Антонович
    © Published under licence by IOP Publishing Ltd.Using virtual reality technology - a modern trend. The nuclear industry is no exception. This article provides an overview of mathematical models used to create virtual analogue of critical assembly Godiva in virtual reality. Godiva - there is a simple example that allows to hone techniques for creating more complex virtual analogues of nuclear reactors and nuclear facilities. Mathematical models include stationary and dynamic ones. The stationary model is based on data from calculations carried out using Monte Carlo programs such as MCU, Serpent and Geant4. An approach is also described that makes it possible to calculate the reverse multiplication from the values of the effective multiplication factor for various states of the subcritical assembly. The dynamic model allows one to calculate the neutron-physical characteristics of the supercritical assembly during fast processes such as a neutron burst. In conclusion, there are other examples of virtual analogs created using similar approaches.
  • Публикация
    Открытый доступ
    Development of a virtual analogue of uranium-graphite subcritical assembly and visualization of the neutron flux distribution in virtual reality
    (2020) Kiryukhin, P.; Shcherbakov, A.; Romanenko, V.; Pugachev, P.; Khomyakov, D.; Tikhomirov, G.; Zadeba, E.; Кирюхин, Павел Константинович; Щербаков, Александр Антонович; Романенко, Владислав Игоревич; Пугачев, Павел Александрович; Хомяков, Дмитрий Андреевич; Тихомиров, Георгий Валентинович; Задеба, Егор Александрович
    © 2020 The Authors. Published by Elsevier B.V.The article describes the new software product developed at MEPhI. It represents a virtual reality simulation of an experiment on a subcritical uranium-graphite assembly. This practical work plays an important role in the training of young specialists studying the physics of nuclear reactors. However not all students have access to real experimental facilities, this fact makes it necessary to complement real experiment with simulation in virtual reality that allows to accurately reproduce the actions that the student performs during the real practical work. This approach let to increase the efficiency of the educational process and even expand the capabilities of real experimental assembly by visualizing physical processes during its operation.
  • Публикация
    Открытый доступ
    SKETCH-N/ATHLET coupled calculations using the boundary conditions plugin
    (2020) Perin, Y.; Henry, R.; Velkov, K.; Romanenko, V. I.; Nikonov, S. P.; Zimin, V. G.; Романенко, Владислав Игоревич; Зимин, Вячеслав Геннадьевич
    © Published under licence by IOP Publishing Ltd.The paper describes recent developments in the multi-physics coupling scheme between the SKETCH-N nodal neutronics code and the best-estimate thermohydraulic code ATHLET v3.2. The boundary conditions plugin was implemented. The verification and validation were performed using the transient of the Kalinin-3 international Benchmark. The simulation results using the boundary conditions plugin show good agreement with experimental data and calculations performed by using SKETCH-N/ATHLET direct calculations. The calculations of the transient "Switch off of one MCP (Main Coolant Pump) at nominal power"is performed applying a simple core thermohydraulic model without taking into account inter-channel mass transfer.
  • Публикация
    Открытый доступ
    "ИНТЕРАКТИВНАЯ ЛАБОРАТОРНАЯ РАБОТА В ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ "ПУСК РЕАКТОРА ИРТ МИФИ"
    (НИЯУ МИФИ, 2023) Пугачев, П. А.; Тихомиров, Г. В.; Кирюхин, П. К.; Григорьев, Е. В.; Щербаков, А. А.; Романенко, В. И.; Хомяков, Д. А.; Минаев, Е. В. ; Чернов, Е. В.; Романенко, Владислав Игоревич; Чернов, Евгений Владимирович; Тихомиров, Георгий Валентинович; Кирюхин, Павел Константинович; Хомяков, Дмитрий Андреевич; Щербаков, Александр Антонович; Пугачев, Павел Александрович
    Программа предназначена для обучения студентов основам обращения с экспериментальными реакторами на примере операции пуска. Лабораторная работа выполнена в виде интерактивного приложения в виртуальной реальности, воссоздающего опыт работы на установке-прототипе - реакторе ИРТ МИФИ. Лабораторная работа включает окружение ИРТ МИФИ, полностью функциональный пульт управления реактором и математические модели, нейтронно-физические и теплофизические, обеспечивающие моделирование процессов инженерной точности. Тип ЭВМ: IBM PC-совмест. ПК; ОС: Windows 10 и выше.
  • Публикация
    Только метаданные
    Связанное нейтронно-физическое/теплогидравлическое моделирование ТВС реактора ВВЭР-1000 с помощью кодов MCU/ATHLET
    (2021) Романенко, В. И.; Романенко, Владислав Игоревич; Тихомиров Георгий Валентинович
  • Публикация
    Только метаданные
    Virtual analog of uranium-water subcritical assembly
    (2022) Kiryukhin, P. K.; Romanenko, V. I.; Khomyakov, D. A.; Shcherbakov, A. A.; Pugachev, P. A.; Yushin, I. M.; Ashraf, O.; Tikhomirov, G. V.; Кирюхин, Павел Константинович; Романенко, Владислав Игоревич; Хомяков, Дмитрий Андреевич; Щербаков, Александр Антонович; Пугачев, Павел Александрович; Тихомиров, Георгий Валентинович
    © 2022 Elsevier LtdVirtual reality (VR) technology is now being adopted in many industries, including entertainment, medicine, science, and engineering. In the nuclear field, the primary purposes of VR are: reducing radiation dose rates, security of nuclear facilities, visualization of physical processes, and training of personnel. Additionally, VR is a much cheaper alternative to expensive and license-requiring experimental nuclear facilities. This work focuses on reconstructing the workroom with the Uranium-Water Subcritical Assembly (UWSA) located at the National Research Nuclear University MEPhI to determine the optimal uranium–water ratio associated with this assembly in virtual reality. The creation of the virtual analog using Unreal Engine 4 was introduced to integrate the physical model into the virtual environment. The neutronic model of the UWSA was obtained by the MCU code. A similar model was generated by the Serpent code for verification purposes. Additional functions such as neutron flux visualization, radiation dose rate distribution visualization, and dose accumulation mechanics were introduced into the project to improve the quality of education. Visualization of both neutron flux in the assembly and gamma radiation distribution in the workroom was performed using particle systems and volumetric fog based on calculated and experimental data. Operating experience feedback was introduced to prevent or minimize difficulties that may occur in the future by learning from events that have already occurred.