Персона:
Завестовская, Ирина Николаевна

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Завестовская
Имя
Ирина Николаевна
Имя

Результаты поиска

Теперь показываю 1 - 10 из 42
  • Публикация
    Только метаданные
    Hydroacoustic Pressure Gradient Recording by a System of Two Fiber-Optic Accelerometers
    (2021) Kamenev, O. T.; Petrov, Y. S.; Podlesnykh, A. A.; Kolchinskiy, V. A.; Zavestovskaya, I. N.; Kulchin, Y. N.; Завестовская, Ирина Николаевна; Кульчин, Юрий Николаевич
    © 2021, Allerton Press, Inc.Abstract: The paper presents the results of experimental studies of a portable measuring system based on two inertial fiber-optic accelerometers with a multiturn optomechanical transducer placed in a Mach—Zehnder fiber-optic interferometer arm used as a sensitive element. Passive phase demodulation using a fiber-optic splitter 3 × 3 makes it possible to record interferometer output signals in the presence of a thermal drift of the operating point. The possibility of recording using such an acoustic and hydroacoustic pressure gradient system is shown.
  • Публикация
    Только метаданные
    Prospects for the use of hexagonal ferrite particles for targeted drug delivery and local heating of organic nanocontainers
    (2021) Rybakov, A. V.; Stepkina, A. P.; Smirnov, V. V.; Alykova, O. M.; Alykova, A. F.; Zavestovskaya, I. N.; Завестовская, Ирина Николаевна
    © 2021 Institute of Physics Publishing. All rights reserved.Currently, it seems more promising to combine controlled drug delivery using liposomes or other agents in combination with ferrite nanoparticles for the treatment of oncological diseases. The release of drugs can be carried out by heating the particles with an alternating magnetic field. In this case, the local temperature can be set more precisely by selecting the chemical composition and structure of the ferrite in such a way as to obtain the necessary Curie temperature. Moreover, it is possible to concentrate nanoparticles in the desired area with extremely small dimensions using an oriented constant magnetic field. The article analyzes the existing methods of delivering antitumor antibiotics using magnetic nanoparticles, presents its own solutions in the field of magnetic transportation and tracking of nanocontainers, considers the problems of the depth of penetration of the magnetic field into the tissues of the body and minimizing their hyperthermia. The authors proposed to use magnetic particles of hexagonal strontium ferrite synthesized by cryochemical technology for controlled delivery and release by heating.
  • Публикация
    Только метаданные
    Effect of silicon target porosity on laser ablation threshold: molecular dynamics simulation
    (2021) Kharin, A. Y.; Grigoryeva, M. S.; Zavestovskaya, I. N.; Timoshenko, V. Y.; Григорьева, Мария Сергеевна; Завестовская, Ирина Николаевна; Тимошенко, Виктор Юрьевич
    Ablation of a porous silicon target under irradiation with ultrashort laser pulse is simulated by means of the molecular dynamics approach. The number of ablated atoms is calculated for targets with different porosity under irradiation with wavelengths in ultraviolet (UV) and visible spectral ranges, which correspond to stronger and weaker absorption coefficient, respectively. An increase of the porosity to 80% leads to 1.5-3 times decrease of the ablation threshold compared to the bulk silicon, while a decrease of pores size from 2.5 to 1.2 nm leads to the stronger ablation threshold drop and the effect is stronger for the UV irradiation. The results are useful for laser processing of silicon-based targets and nanofabrication.
  • Публикация
    Только метаданные
    Measurement of silicon nanoparticles temperature by raman spectroscopy
    (2021) Alykova, A. F.; Grigoryeva, M. S.; Zavestovskaya, I. N.; Timoshenko, V. Yu.; Григорьева, Мария Сергеевна; Завестовская, Ирина Николаевна; Тимошенко, Виктор Юрьевич
    © 2021 Journal of Biomedical Photonics & Engineering.The temperature of silicon nanoparticles under laser photo-induced heating is determined from the ratio of the intensities of the Stokes and anti-Stokes components of the Raman scattering. The obtained results of the dependence of nanoparticles temperature on the laser radiation intensity and the temperature dependence of the Raman line position may be used to determine the optimal regimes of photo-hyperthermia enhanced by silicon nanoparticles for cancer therapy.
  • Публикация
    Только метаданные
    Key Notes on Fixed Point Programming in Particle Radiotherapy
    (2024) Chernukha,A.E.; Saburov,V.O.; Adarova,A.I.; Skotnikova,N.A.; Koryakin,S.N.; Zavestovskaya,I.N.; Solovev,A.N.; Завестовская, Ирина Николаевна
  • Публикация
    Только метаданные
    Boron Nanoparticle-Enhanced Proton Therapy: Molecular Mechanisms of Tumor Cell Sensitization
    (2024) Popov, A. L.; Kolmanovich, D. D.; Chukavin, N. N.; Zelepukin, I. V.; Tikhonowski, G. V.; Popov, A. A.; Klimentov, S. M.; Deyev, S. M.; Zavestovskaya, I. N.; Тихоновский, Глеб Валерьевич; Попов, Антон Александрович; Климентов, Сергей Михайлович; Деев, Сергей Михайлович; Завестовская, Ирина Николаевна
    Boron-enhanced proton therapy has recently appeared as a promising approach to increase the efficiency of proton therapy on tumor cells, and this modality can further be improved by the use of boron nanoparticles (B NPs) as local sensitizers to achieve enhanced and targeted therapeutic outcomes. However, the mechanisms of tumor cell elimination under boron-enhanced proton therapy still require clarification. Here, we explore possible molecular mechanisms responsible for the enhancement of therapeutic outcomes under boron NP-enhanced proton therapy. Spherical B NPs with a mode size of 25 nm were prepared by methods of pulsed laser ablation in water, followed by their coating by polyethylene glycol to improve their colloidal stability in buffers. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell killing under irradiation with a 160.5 MeV proton beam. Our experiments showed that the combined effect of B NPs and proton irradiation induces an increased level of superoxide anion radical generation, which leads to the depolarization of mitochondria, a drop in their membrane mitochondrial potential, and the development of apoptosis. A comprehensive gene expression analysis (via RT-PCR) confirmed increased overexpression of 52 genes (out of 87 studied) involved in the cell redox status and oxidative stress, compared to 12 genes in the cells irradiated without B NPs. Other possible mechanisms responsible for the B NPs-induced radiosensitizing effect, including one related to the generation of alpha particles, are discussed. The obtained results give a better insight into the processes involved in the boron-induced enhancement of proton therapy and enable one to optimize parameters of proton therapy in order to maximize therapeutic outcomes.
  • Публикация
    Только метаданные
    Nanoparticles based on MIL-101 metal-organic frameworks as efficient carriers of therapeutic188Re radionuclide for nuclear medicine
    (2024) Belyaev, I. B.; Zelepukin, I. V.; Petriev, V. M.; Klimentov, S. M.; Zavestovskaya, I. N.; Deyev, S. M.; Климентов, Сергей Михайлович; Завестовская, Ирина Николаевна; Деев, Сергей Михайлович
  • Публикация
    Только метаданные
    VIII International Youth Scientific School-Conference "modern Problems of Physics and Technology" (MPPT2019): Preface
    (2020) Krokhin, O. N.; Zavestovskaya, I. N.; Yashin, I. I.; Fronya, A. A.; Завестовская, Ирина Николаевна; Яшин, Игорь Иванович; Фроня, Анастасия Андреевна
  • Публикация
    Только метаданные
    Bone-seeking radiopharmaceuticals based on phosphonic acids and 68Ga (review) Остеотропные радиофармацевтические препараты на основе фосфоновых кислот и 68Ga (обзор)
    (2020) Tishchenko, V. K.; Ivanov, S. A.; Kaprin, A. D.; Petriev, V. M.; Zavestovskaya, I. N.; Завестовская, Ирина Николаевна
    © 2020 National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation. All rights reserved.Bone metastases cause severe bone pain, growing with solid tumor progression, and lead to significant decreasing patients quality of life. Nowadays positron emission tomography (PET) is the most informative method of radionuclide imaging. PET is highly sensitive non-invasive method of visualization of biochemical and molecular processes in the body. It enables to detect tumor lesions when structure changes are not determined or are not specific. Now radiopharmaceuticals based on 18F are available for bone metastases detection by PET. Their major disadvantage is cyclotron-based synthesis of 18F that limits the application of 18F-containing radiopharmaceuticals. During the last 15-17 years the interest in 68Ga has increased drastically around the world. 68Ga is the promising generator-based radionuclide with appropriate nuclear properties (Т1/2=68 min, β+=89%, E+ βmax=1,9 MeV) for radiosynthesis of a broad spectrum of radiopharmaceuticals. In this work nuclear-physical, chemical and biological properties of gallium-68 (68Ga) are presented. The approaches to synthesis of new bone-seeking compounds based on phosphonic acids and 68Ga are highlighted in detail. Thorough data about experimental studies and clinical application of the most promising compounds are also shown in this article.
  • Публикация
    Только метаданные
    Colloidal samarium oxide nanoparticles prepared by femtosecond laser ablation and fragmentation for nuclear nanomedicine
    (2020) Duflot, V. R.; Popova-Kuznetsova, E.; Tikhonowski, G.; Popov, A. A.; Deyev, S. M.; Klimentov, S. M.; Zavestovskaya, I. N.; Prasad, P. N.; Kabashin, A. V.; Попова-Кузнецова, Елена Алефтиновна; Тихоновский, Глеб Валерьевич; Попов, Антон Александрович; Деев, Сергей Михайлович; Климентов, Сергей Михайлович; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович
    © 2020 SPIE.Nanotechnology promises a major improvement of efficacy of nuclear medicine by targeted delivery of radioactive agents to tumors, but this approach still needs novel efficient nanoformulations to maximize diagnostic and therapeutic functions. Here, we present a two-step method of laser ablation and fragmentation in water to produce non-radioactive 152Sm-enriched samarium oxide nanoparticles (Sm NPs), which can be converted to radioactive form of 153Sm beta-emitters by neutron capture reaction. We found that laser ablation in deionized water leads to the formation of NPs having diverse morphology and broad size dispersion. To improve size characteristics of formed NPs, we applied additional femtosecond laser fragmentation step, which made possible a good control of mean NPs size under a drastic narrowing of size dispersion, and the spherical shape of formed NPs. Obtained colloidal solutions of Sm NPs were stable for several weeks after the synthesis. The formed NPs present a very promising object for nuclear nanomedicine.