Персона:
Климентов, Сергей Михайлович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Руководитель научной группы "Центр нанобиомедицины"
Фамилия
Климентов
Имя
Сергей Михайлович
Имя

Результаты поиска

Теперь показываю 1 - 10 из 59
  • Публикация
    Открытый доступ
    Effect of long-wavelength coherent radiation on a biological object (unicellular organism Paramecium Caudatum) in presence of silicon nanoparticles
    (2019) Oleshenko, V. A.; Karpukhina, O. V.; Alykova, O. M.; Bezotosniy, V. V.; Alykova, A. F.; Karpov, N. V.; Klimentov, S. M.; Timoshenko, V. Y.; Zavestovskaya, I. N.; Климентов, Сергей Михайлович; Тимошенко, Виктор Юрьевич; Завестовская, Ирина Николаевна
    © 2019 Published under licence by IOP Publishing Ltd. We report an effect of continuous and pulsed near infrared (808 nm) laser radiation on cells (Paramecium Caudatum) incubated with silicon (Si) nanoparticles (NPs), which were obtained by laser ablation of crystalline Si wafer in water. The data obtained indicate the possibility of enhancing the destructive effect on cells by using pulsed laser irradiation and Si NPs.
  • Публикация
    Открытый доступ
    High-order harmonic generation in au nanoparticle-contained plasmas
    (2020) Venkatesh, M.; Ganeev, R. A.; Boltaev, G. S.; Kim, V. V.; Ivanov, D. S.; Kabashin, A. V.; Klimentov, S. M.; Иванов, Дмитрий Сергеевич; Кабашин, Андрей Викторович; Климентов, Сергей Михайлович
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Gold nanoparticles (NPs) have a wide range of applications in various fields. Here, we present high-order nonlinear optical studies of the plasmas produced from ablation of Au bulk targets and Au NP films deposited on paper and glass substrates. Experimentally, we analyze high-order harmonic generation (HHG) from gold NPs-containing plasmas. The HHG is produced by 35-fs pulses at 800 and 400 nm, while the plasmas are produced by femtosecond (35 fs, 800 nm), picosecond (200 ps, 800 nm), and nanosecond (5 ns, 1064 nm) pulses, respectively. High-order harmonics produced from ablated Au NPs on paper were 40 times stronger than the HHG from that ablated from the Au bulk targets. Through molecular dynamic simulations, we investigate the formation of gold NPs during laser ablation of a metal surface under different conditions.
  • Публикация
    Открытый доступ
    Tailoring Photoluminescence from Si-Based Nanocrystals Prepared by Pulsed Laser Ablation in He-N2 Gas Mixtures
    (2020) Muratov, A. V.; Fronya, A. A.; Antonenko, S. V.; Kharin, A. Y.; Aleshchenko, Y. A.; Derzhavin, S. I.; Karpov, N. V.; Dombrovska, Y. I.; Garmash, A. A.; Kargin, N. I.; Klimentov, S. M.; Timoshenko, V. Y.; Kabashin, A. V.; Фроня, Анастасия Андреевна; Антоненко, Сергей Васильевич; Алещенко, Юрий Анатольевич; Гармаш, Александр Александрович; Каргин, Николай Иванович; Климентов, Сергей Михайлович; Тимошенко, Виктор Юрьевич; Кабашин, Андрей Викторович
    Using methods of pulsed laser ablation from a silicon target in helium (He)-nitrogen (N2) gas mixtures maintained at reduced pressures (0.5-5 Torr), we fabricated substrate-supported silicon (Si) nanocrystal-based films exhibiting a strong photoluminescence (PL) emission, which depended on the He/N2 ratio. We show that, in the case of ablation in pure He gas, Si nanocrystals exhibit PL bands centered in the "red - near infrared" (maximum at 760 nm) and "green" (centered at 550 nm) spectral regions, which can be attributed to quantum-confined excitonic states in small Si nanocrystals and to local electronic states in amorphous silicon suboxide (a-SiOx) coating, respectively, while the addition of N2 leads to the generation of an intense "green-yellow" PL band centered at 580 nm. The origin of the latter band is attributed to a radiative recombination in amorphous oxynitride (a-SiNxOy) coating of Si nanocrystals. PL transients of Si nanocrystals with SiOx and a-SiNxOy coatings demonstrate nonexponential decays in the micro- and submicrosecond time scales with rates depending on nitrogen content in the mixture. After milling by ultrasound and dispersing in water, Si nanocrystals can be used as efficient non-toxic markers for bioimaging, while the observed spectral tailoring effect makes possible an adjustment of the PL emission of such markers to a concrete bioimaging task.
  • Публикация
    Открытый доступ
    Localized infrared radiation-induced hyperthermia sensitized by laser-ablated silicon nanoparticles for phototherapy applications
    (2020) Oleshchenko, V. A.; Karpukhina, O. V.; Bezotosnyi, V. V.; Kharin, A. Y.; Alykova, A. F.; Karpov, N. V.; Popov, A. A.; Klimentov, S. M.; Zavestovskaya, I. N.; Kabashin, A. V.; Timoshenko, V. Y.; Попов, Антон Александрович; Климентов, Сергей Михайлович; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович; Тимошенко, Виктор Юрьевич
    © 2020 Elsevier B.V.Silicon (Si) nanoparticles (NPs) synthesized by methods of laser ablation in water are explored as sensitizers of photothermal therapy under a laser excitation in the window of relative tissue transparency. Based on theoretical calculations and experimental data, it is shown that the NPs can be heated up to temperatures above 42–50 °C by laser diode irradiation at 808 nm in continuous wave (CW) and quasi-continuous wave (QCW) regimes. Profiting from the laser-induced heating, a high efficiency Si-NPs as sensitizers of the hyperthermia of cells in Paramecium Caudatum model is demonstrated. The QCW regime is found to be more efficient, leading to complete cell destruction even under relatively mild laser irradiation conditions. The obtained data evidence a great potential in using laser-ablated Si-NPs as sensitizers of photohyperthermia in antibacterial or cancer therapy applications.
  • Публикация
    Только метаданные
    International symposium and international school for young scientists on "physics, engineering and technologies for biomedicine"
    (2021) Kabashin, A. V.; Klimentov, S. M.; Timoshenko, V. Yu.; Fronya, A. A.; Кабашин, Андрей Викторович; Климентов, Сергей Михайлович; Тимошенко, Виктор Юрьевич; Фроня, Анастасия Андреевна
    Abstract International Symposium and International School for Young Scientists on “Physics, Engineering and Technologies for Biomedicine” (PhysBioSymp) is an annually held event in National Research Nuclear University MEPhI (https://eng.mephi.ru/) (Moscow, Russia) since 2016. This symposium is conceived as the main conference of the Institute of Engineering Physics for Biomedicine (PhysBio, https://physbio.mephi.ru/), which is one of new strategic academic units founded in 2016 in the course of transformation of MEPhI from the technical to a global university in order to extend its portfolio toward life sciences, chemical and biomedical engineering. Following the chosen strategy, PhysBio aims at the advancement of its international reputation in biomedical sciences and technologies, as well as the integration of latest research achievements into the educational process in order to contribute to the solution of global problems, such as early diagnostics and efficient therapy of socially significant diseases, including cancer. Conceived as an essentially interdisciplinary institution, PhysBio is unique in combining powerful background of MEPhI in physics, mathematics, engineering, material sciences, nanotechnologies and expertise in new areas in chemistry and biology in order to develop breakthrough technologies for biomedical applications. List of Committees are available in this pdf.
  • Публикация
    Только метаданные
    Cytotoxicity of Laser-Synthesized Nanoparticles of Elemental Bismuth
    (2024) Shakhov, P. V.; Tikhonowski, G. V.; Popov, A. A.; Iliasov, A. R.; Lebedev, A. A.; Klimentov, S. M.; Шахов, Павел Владимирович; Тихоновский, Глеб Валерьевич; Попов, Антон Александрович; Илясов, Артём Романович; Лебедев, Анатолий Алексеевич; Климентов, Сергей Михайлович
  • Публикация
    Только метаданные
    Laser-Ablative Engineering of ZrN-Based Nanoparticles for Photothermal Therapy and SERS-Based Biological Imaging
    (2024) Pastukhov, A. I.; Babkova, J. S.; Zelepukin, I. V.; Popov, A. A.; Klimentov, S. M.; Prasad, P. N.; Deyev, S. M.; Бабкова, Юлия Сергеевна; Попов, Антон Александрович; Климентов, Сергей Михайлович; Деев, Сергей Михайлович
  • Публикация
    Только метаданные
    Boron Nanoparticle-Enhanced Proton Therapy: Molecular Mechanisms of Tumor Cell Sensitization
    (2024) Popov, A. L.; Kolmanovich, D. D.; Chukavin, N. N.; Zelepukin, I. V.; Tikhonowski, G. V.; Popov, A. A.; Klimentov, S. M.; Deyev, S. M.; Zavestovskaya, I. N.; Тихоновский, Глеб Валерьевич; Попов, Антон Александрович; Климентов, Сергей Михайлович; Деев, Сергей Михайлович; Завестовская, Ирина Николаевна
    Boron-enhanced proton therapy has recently appeared as a promising approach to increase the efficiency of proton therapy on tumor cells, and this modality can further be improved by the use of boron nanoparticles (B NPs) as local sensitizers to achieve enhanced and targeted therapeutic outcomes. However, the mechanisms of tumor cell elimination under boron-enhanced proton therapy still require clarification. Here, we explore possible molecular mechanisms responsible for the enhancement of therapeutic outcomes under boron NP-enhanced proton therapy. Spherical B NPs with a mode size of 25 nm were prepared by methods of pulsed laser ablation in water, followed by their coating by polyethylene glycol to improve their colloidal stability in buffers. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell killing under irradiation with a 160.5 MeV proton beam. Our experiments showed that the combined effect of B NPs and proton irradiation induces an increased level of superoxide anion radical generation, which leads to the depolarization of mitochondria, a drop in their membrane mitochondrial potential, and the development of apoptosis. A comprehensive gene expression analysis (via RT-PCR) confirmed increased overexpression of 52 genes (out of 87 studied) involved in the cell redox status and oxidative stress, compared to 12 genes in the cells irradiated without B NPs. Other possible mechanisms responsible for the B NPs-induced radiosensitizing effect, including one related to the generation of alpha particles, are discussed. The obtained results give a better insight into the processes involved in the boron-induced enhancement of proton therapy and enable one to optimize parameters of proton therapy in order to maximize therapeutic outcomes.
  • Публикация
    Только метаданные
    Nanoparticles based on MIL-101 metal-organic frameworks as efficient carriers of therapeutic188Re radionuclide for nuclear medicine
    (2024) Belyaev, I. B.; Zelepukin, I. V.; Petriev, V. M.; Klimentov, S. M.; Zavestovskaya, I. N.; Deyev, S. M.; Климентов, Сергей Михайлович; Завестовская, Ирина Николаевна; Деев, Сергей Михайлович
  • Публикация
    Открытый доступ
    Создание композитов Bi@SiO2 со структурой ядро@оболочка на основе лазерно-синтезированных наночастиц Bi
    (2023) Скрибицкая, А. В.; Короткова, Н. А.; Котельникова, П. А.; Тихоновский, Г. В.; Попов, А. А.; Климентов, С. М.; Завестовская, И. Н.; Кабашин, А. В.; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович; Климентов, Сергей Михайлович; Попов, Антон Александрович; Скрибицкая, Ангелина Вячеславовна; Тихоновский, Глеб Валерьевич
    Разработана методика получения нанокомпозитов по типу ядро@оболочка путём поверхностной модификации лазерно-синтезированных наночастиц (НЧ) висмута тетраэтоксисиланом с конечной структурной формулой Bi@SiO2. Показано, что покрытие НЧ Bi оболочкой из SiO2 приводит к образованию сферических наноформуляций с модой размерного распределения 250 – 300 нм. Разработанная методика, позволяющая создавать биосовместимые нанокомпозиты на основе Bi для сенсибилизации мультимодальной тераностики, является новой перспективной альтернативой традиционным методам.