A Neural Abstract Machine

dc.creatorBörger,Egon
dc.creatorSona,Diego
dc.date2001
dc.date.accessioned2024-02-06T12:51:25Z
dc.date.available2024-02-06T12:51:25Z
dc.descriptionIn an attempt to capture the fundamental features that are common to neural networks, we define a parameterized Neural Abstract Machine (NAM) in such a way that the major neural networks in the literature can be described as natural extensions or refinements of the NAM. We illustrate the refinement for feedforward networks with back-propagation training. The NAM provides a platform and programming language independent basis for a comparative mathematical and experimental analysis and evaluation of different implementations of neural networks. We concentrate our attention here on the computational core (Neural Kernel NK) and provide abstract interfaces for the other NAM components.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-007-11-1006
dc.identifierhttps://lib.jucs.org/article/27834/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/8039
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 7(11): 1006-1023
dc.subjectneural networks
dc.subjectneural abstract machine
dc.subjectabstract state machines
dc.subjectdistributed computation
dc.titleA Neural Abstract Machine
dc.typeResearch Article
Файлы