An Aperiodic Set of Wang Cubes

dc.creatorIi.,Karel
dc.creatorKari,Jarkko
dc.date1995
dc.date.accessioned2024-02-06T12:47:56Z
dc.date.available2024-02-06T12:47:56Z
dc.descriptionWe introduce Wang cubes with colored faces that are a generalization of Wang tiles with colored edges. We show that there exists an aperiodic set of 21 Wang cubes, that is, a set for which there exists a tiling of the whole space with matching unit cubes but there exists no periodic tiling. We use the aperiodic set of 13 Wang tiles recently obtained by the first author using the new method developed by the second. Our method can be used to construct an aperiodic set of n-dimensional cubes for any n 3.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-001-10-0675
dc.identifierhttps://lib.jucs.org/article/27167/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/6864
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 1(10): 675-686
dc.subjectdiscrete mathematics
dc.subjectautomata theory
dc.subjectaperiodic tilings
dc.subjectWang tiles
dc.subjectWang cubes
dc.subjectsequential machines
dc.titleAn Aperiodic Set of Wang Cubes
dc.typeResearch Article
Файлы