Constructive Aspects of the Dirichlet Problem

dc.creatorBridges,Douglas
dc.creatorYuchuan,Wang
dc.date1997
dc.date.accessioned2024-02-06T12:49:07Z
dc.date.available2024-02-06T12:49:07Z
dc.descriptionWe examine, within the framework of Bishop's constructive mathematics, various classical methods for proving the existence of weak solutions of the Dirichlet Problem, with a view to showing why those methods do not immediately translate into viable constructive ones. In particular, we discuss the equivalence of the existence of weak solutions of the Dirichlet Problem and the existence of minimizers for certain associated integral functionals. Our analysis pinpoints exactly what is needed to find weak solutions of the Dirichlet Problem: namely, the computation of either the norm of a linear functional on a certain Hilbert space or, equivalently, the infimum of an associated integral functional. 1.) Proceedings of the First Japan-New Zealand Workshop on Logic in Computer Science, special issue editors D.S. Bridges, C.S. Calude, M.J. Dinneen and B. Khoussainov.
dc.formattext/html
dc.identifierhttps://doi.org/10.3217/jucs-003-11-1148
dc.identifierhttps://lib.jucs.org/article/27421/
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/7248
dc.languageen
dc.publisherJournal of Universal Computer Science
dc.relationinfo:eu-repo/semantics/altIdentifier/eissn/0948-6968
dc.relationinfo:eu-repo/semantics/altIdentifier/pissn/0948-695X
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsJ.UCS License
dc.sourceJUCS - Journal of Universal Computer Science 3(11): 1148-1161
dc.subjectDirichlet problem
dc.subjectHilbert space
dc.subjectBishop's constructive mathematics
dc.titleConstructive Aspects of the Dirichlet Problem
dc.typeResearch Article
Файлы